
i

THESIS

AN AUTOMATED APPROACH TO
DISTRIBUTED INTERACTIVE SIMULATION (DIS)

PROTOCOL ENTITY DEVELOPMENT

by

Michael Canterbury

 September 1995

Thesis Advisors: Michael Zyda
      John Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California



ii



Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
    REPORT NUMBER

10. SPONSORING/ MONITORING
      AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
      OF REPORT

18. SECURITY CLASSIFICATION
      OF THIS PAGE

19. SECURITY CLASSIFICATION
      OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Canterbury, Michael

September 1995 Master’s Thesis

Unclassified Unclassified ULUnclassified

 An Automated Approach to Distributed Interactive Simulation (DIS)
Protocol Entity Development(U)

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

One problem associated with theDistributed Interactive Simulation(DIS) architecture is its limited ability to
support real-time, simulated engagements of more than 1000 entities. To solve this problem, it is necessary to refine the
existing DIS protocol and optimize the form and content of DIS network traffic. Fundamental to this solution is the need to
1) adopt a structured grammar to be used in describing the protocol, 2) provide a means to author and edit refined DIS data
elements, and 3) expedite the coding and implementation of related protocol improvements. In simple terms, the problem
addressed by this thesis is to meet each of these requisite needs.

The approach was to design and build a protocol development tool. This was accomplished in three phases. First, a
modified Backus-Naur Form (BNF) grammar was formulated for use in modeling DIS data elements. Next, this grammar
was applied to the Protocol Data Units (PDU) and data types specified in the current DIS standard. Finally, a tool, the DIS
Protocol Support Utility, was developed as a means to automate the process of authoring, editing, and implementing
refinements to the DIS protocol.

As a result of this effort, the data elements depicted in the current DIS standard have been specified using a BNF-
like grammar. The Protocol Support Utility has been used to process this grammar and automatically generate the program
source code associated with each data element, thus expediting the protocol development process.

Distributed Interactive Simulations, networks, communications protocols



ii

Approved for public release; distribution is unlimited.

AN AUTOMATED APPROACH TO
DISTRIBUTED INTERACTIVE SIMULATION (DIS)

PROTOCOL ENTITY  DEVELOPMENT

Michael G.Canterbury
Major, United States Marine Corps

B.S., National University, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

 Author:
Michael Gene Canterbury

Approved by:
Dr. Michael Zyda, Thesis Co-Advisor

John Falby, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science



iii



iv

ABSTRACT

One problem associated with theDistributed Interactive Simulation(DIS)

architecture is its limited ability to support real-time, simulated engagements of more

than 1000 entities. To solve this problem, it is necessary to refine the existing DIS

protocol and optimize the form and content of DIS network traffic. Fundamental to this

solution is the need to 1) adopt a structured grammar to be used in describing the

protocol, 2) provide a means to author and edit refined DIS data elements, and 3)

expedite the coding and implementation of related protocol improvements. In simple

terms, the problem addressed by this thesis is to meet each of these requisite needs.

The approach was to design and build a protocol development tool. This was

accomplished in three phases. First, a modified Backus-Naur Form (BNF) grammar was

formulated for use in modeling DIS data elements. Next, this grammar was applied to

the Protocol Data Units (PDU) and data types specified in the current DIS standard.

Finally, a tool, the DIS Protocol Support Utility, was developed as a means to automate

the process of authoring, editing, and implementing refinements to the DIS protocol.

As a result of this effort, the data elements depicted in the current DIS standard

have been specified using a BNF-like grammar. The Protocol Support Utility has been

used to process this grammar and automatically generate the program source code

associated with each data element, thus expediting the protocol development process.



v



vi

TABLE OF CONTENTS

I. INTRODUCTION .................................................................................................... 1
A. BACKGROUND .................................................................................................1
B. MOTIVATION ....................................................................................................2
C. SUMMARY OF CHAPTERS .............................................................................3

II.  DIS PROGRAM OVERVIEW ................................................................................ 5
A. EVOLUTION OF DIS .........................................................................................5

1. Simulator Networking (SIMNET) ..............................................................5
2. DIS ..............................................................................................................7

B. DIS PROGRAM OBJECTIVES ..........................................................................9
C. IMPLEMENTATION APPROACH .................................................................10
D. FUTURE GOALS ..............................................................................................12

1. Functional Area Coverage of PDUs .........................................................13
2. Information Content and Bandwidth Efficiency .......................................13
3. Streamline PDUs .......................................................................................13
4. Increased Number of Entities ....................................................................13
5. Optional Communications Profiles ...........................................................14
6. Enhanced Interoperability .........................................................................14

E.  THESIS-RELATED WORK ............................................................................14
1. Evolutionary ..............................................................................................15
2. Revolutionary ............................................................................................15
3. Tools and Utilities .....................................................................................16

III. COMMUNICATIONS ARCHITECTURE for DIS (CADIS) ............................... 17
A. THE ISO/OSI REFERENCE MODEL ..............................................................17

1. Physical Layer ...........................................................................................17
2. Data Link Layer ........................................................................................18
3. Network Layer ..........................................................................................18
4. Transport Layer .........................................................................................19
5. Session Layer ............................................................................................19
6. Presentation Layer ....................................................................................19
7. Application Layer .....................................................................................19

B. CADIS ................................................................................................................20
1. CADIS Design Philosophy .......................................................................20
2. Related Protocols ......................................................................................23
3. DIS Protocol Suites ...................................................................................25

C. DIS-TO-ISO/OSI CORRELATION ..................................................................27
1. Standards ...................................................................................................27
2. Functional Correlation ..............................................................................29

IV. DIS APPLICATIONS PROTOCOL ....................................................................... 31
A. PHILOSOPHY ...................................................................................................31
B. DESIGN OBJECTIVES ....................................................................................32

1. Autonomy of Simulation Hosts ................................................................32



vii

2. Object/Event-based Architecture ..............................................................32
3. Minimized Transmission of State Change Information ............................32
4. Use of Dead Reckoning Algorithms .........................................................33
5. Obligation to Transmit “Ground Truth” ...................................................33

C. PROTOCOL DATA UNITS (PDUs) ................................................................33
1. Entity Information/Interaction Protocol Family .......................................34
2. Warfare Protocol Family ...........................................................................34
3. Logistics Protocol Family .........................................................................34
4. Simulation Management Protocol Family ................................................34
5. Distributed Emission Regeneration Family ..............................................35

D. PDU STRUCTURE ...........................................................................................35
V. DIS DESCRIPTIVE GRAMMAR ......................................................................... 39

A. TAXONOMY ....................................................................................................39
B. STRUCTURED GRAMMAR ...........................................................................39
C. APPLICATION .................................................................................................43

VI. PROTOCOL SUPPORT UTILITY ........................................................................ 47
A. RATIONALE .....................................................................................................47
B. FUNCTIONAL OVERVIEW ............................................................................48
C. ASSUMPTIONS AND CONSTRAINTS ..........................................................49

1. Operating Environment .............................................................................49
2. Performance Criteria .................................................................................50
3. Basic Protocol Characteristics ..................................................................50
4. Entity Naming ...........................................................................................50
5. Arbitrary Numeric Constraints .................................................................51
6. Applicability .............................................................................................51

D. DESIGN AND IMPLEMENTATION ..............................................................51
1. Tables and Structures ................................................................................52
2. Lexical Analysis ........................................................................................54
3. User Interface ............................................................................................55
4. Grammar Editors .......................................................................................58
5. Source Code Generation ...........................................................................60

E.  INSPECTION AND TESTING ........................................................................63
VII. FINDINGS AND FUTURE RESEARCH .............................................................. 65

A. FINDINGS .........................................................................................................65
B. CONCLUSIONS ................................................................................................67
C. TOPICS FOR FURTHER RESEARCH ............................................................67

APPENDIX A: DIS PROTOCOL SPECIFICATION ......................................................69
APPENDIX B: DIS LEX SOURCE LISTING ................................................................93
APPENDIX C: PROTOCOL SUPPORT UTILITY USER’S GUIDE ............................97
APPENDIX D: APPLICATION SUPPORT INFORMATION .....................................105
LIST OF REFERENCES ................................................................................................113
INITIAL DISTRIBUTION LIST ...................................................................................117



viii

LIST OF FIGURES

  1. DIS Interoperability Requirements .............................................................................8
  2. OSI Reference Model ...............................................................................................18
  3. DIS-to-OSI Standards Correlation............................................................................28
  4. DIS Descriptive Grammar Example .........................................................................43
  5. Protocol Support Utility Functional Overview.........................................................49
  6. Protocol Support Utility User Interface ....................................................................56



1

I. INTRODUCTION

A. BACKGROUND

Scientists and engineers have long relied upon modeling as a means to represent the

salient characteristics of complex systems or phenomenon. This reliance on surrogate

systems (or models) has been of particular importance in cases where the use of the original

object under study was not practical for reasons of cost, mass, or complexity. Coincident

with the use of modeling, the concept of simulation has evolved. In simple terms,

simulation is defined as the process in which the dynamic behavior of one system (the

original) can be predicted or extrapolated by observing the behavior of another, less

complex system (the model). Simulations provide a means to exercise a given model within

a specific context or synthetic environment.

As a predictive tool, the use of modeling and simulation likely dates back to the earliest

days of science. It is hard to imagine daVinci exploring human-powered flight without the

aid of a model or two. The military, too, has a long-standing history of model and

simulation use. From the earliest mock battles to the complex flight simulators of today, the

benefits have been immeasurable in terms of cost, training, and advances in tactical

planning.

While simulation has been historically a tool of science, digital simulations are a fairly

recent phenomenon. First postulated by von Neumann [VNR93], this advance in

technology has provided a way to model and simulate larger and more complex entities.

The advent of computers has wrought a literal explosion in the number and complexity of

computer-based simulators that exist today. Similarly, the range of applications for which

simulation is appropriate has continued to grow. Today’s military would be ill prepared for

the challenges of the tomorrow without the simulators of today.

 The size and complexity of a model is generally driven by the size and complexity of

the object being modeled. A similar relationship exists in the case of simulation systems.

Generally, simulators have been developed to operate within a specific problem domain. A



2

flight simulator, for example, is engineered to reproduce the environment that a pilot might

experience when flying a given aircraft. A weapons simulator would typically emulate the

form, fit, and function of an individual weapon platform whether it be a tank, gun, or

missile launcher. In each case, the simulator in question is developed to model a single,

real-world entity.

Within the realm of stand-alone use, simulation systems have proven invaluable. This

is not, however, the context in which wars are fought. A single tank is not dispatched into

battle. A single ship does not constitute an armada. Military forces are tasked, organized,

and employed as a composite mass of personnel, weapons, and supplies. The diversity,

size, and complexity of such a force makes it nearly impossible to accurately model. In the

same vein, it is unlikely that a single simulator could be devised to emulate the dynamics

of such a force. A more novel approach is required when faced with problems of this ilk.

One solution that has been explored is the concept of distributed or networked

simulation. In this approach, the power of many stand-alone simulators can be integrated

into a larger, more complex environment. This integration of the various systems is

achieved through the use of network technology. In this manner, the complexity of the

overall model is spread among the distributed systems. It is this approach that serves as the

foundation of the Distributed Interactive Simulation (DIS) effort. [Tarr94]

B.  MOTIVATION

The anticipated growth and refinement of DIS dictates the use of an optimized, though

flexible, communications architecture. A key component of this architecture is the

specification and use of a clearly defined application level protocol. The motivation for this

thesis effort is to provide a foundation from which future protocol development might

grow. To this end, the scope of this work includes:

- development of a grammar suitable for modeling the current DIS protocol.

- application of this grammar to the DIS data elements specified in the current

protocol standard [IEEE93].



3

- design, development, and implementation of a Protocol Support Utility to be

used in protocol development and refinement.

- automated generation of the program source code necessary to implement

changes, extensions, and improvements to the DIS protocol.

C.  SUMMARY OF CHAPTERS

Chapter II provides an overview of the DIS development effort in terms of its history,

purpose, objectives, and direction. Chapter III presents an introduction to the

communications architecture associated with DIS, to include an overview of DIS design

criteria and related protocols. Chapter IV discusses the current DIS protocol and covers the

structure and content of individual Protocol Data Units (PDU). Chapter V presents a more

formalized method of defining each PDU using a structured grammar and describes the

application of this grammar to the current protocol. Chapter VI discusses the design and

implementation of the protocol development tool noted above. Finally, Chapter VII

provides a summary of findings, conclusions, and recommendations for follow-on

research.

Appendix A contains a sample grammar-based specification of all Protocol Data Units

in the existing IEEE standard. Appendix B contains the source listing for the lexical

analysis function which is used in parsing any DIS specification given a format similar to

that shown in Appendix A. Finally, Appendices C and D provides instructions for the use

and maintenance of the utility program.



4



5

II.  DIS PROGRAM OVERVIEW

The term DIS is used interchangeably to describe an emerging technology, a uniquely

defined communications protocol, and an ongoing effort to develop the standards to govern

both. While the focus of this thesis relates to DIS as it refers to an applications layer

protocol, it is worthwhile to explore the subject in its broader context. To this end, this

chapter examines the manner in which DIS has evolved, summarizes the objectives of the

DIS effort, and highlights several of the future challenges that must be addressed.

Additionally, a summary of other work related to this thesis is presented.

A.  EVOLUTION OF DIS

The technology associated with DIS has evolved as a logical extension of the stand-

alone simulators of the past. The need to simulate larger and more complex environments

has spawned a demand for more capable, robust simulators. Where stand-alone simulators

have not been adequate, the concept of networked or distributed simulation has been

explored.

1. Simulator Networking (SIMNET)

The first formal requirements for distributed simulation surfaced in the early 1980’s.

These requirements were based on the need to provide realistic, small unit combat training

for U.S Army personnel. While many simulators existed to train individual soldiers and to

reinforce their combat skills (drive a tank, shoot a weapon, fly a plane), there were few

facilities for the collective training of crews, platoons, or companies. Past experience, both

in peacetime and in war, had shown clearly the necessity for training of this type.

In response to the Army requirement, the Defense Advanced Research Project Agency

(DARPA) initiated an effort to develop a distributed architecture which would support the

use of “virtual” simulations. For training purposes, the term “virtual” simulation inferred a

“continuous, real-time, human-in-the-loop” [IST94] environment suitable for the collective



6

training of certain combat units. The resulting system, developed by Bolt Beranek and

Newman (BBN), Perceptronics, and Delta Graphics, was SIMNET.

The principal tenets of the SIMNET system included:

-- a fully distributed architecture with no central event scheduling or control.

-- interconnection of autonomous Simulation Hosts across a Local Area

Network (LAN).

-- fully self sufficient host systems, possessing all necessary resources to

participate in a given simulation.

-- host responsibility for maintaining information on its own state and

communicating the state data and changes to the other hosts on the net.

-- host-to-host communications limited to changes in the host entity state.

-- use of locally executed processes (i.e. Dead Reckoning) to minimize network

traffic and communications overhead.

SIMNET was successful in demonstrating the value of the collective training

approach. It confirmed the viability of distributed simulation as a platform for such training

and provided a foundation for future work in this arena [Mace95].

Today, there are literally hundreds of SIMNET systems in use. It has, in fact, become

a defacto (albeit loosely defined) standard in some training communities. SIMNET is not,

however, without its deficiencies. First, SIMNET is a single vendor’s solution to an Army-

specific problem. The entities and models represented in SIMNET reflect a heavy emphasis

on land-based, armor-oriented combat. In this regard, SIMNET has minimal utility in the

types of training needed by other services (i.e. amphibious landings, ship-to-ship

engagements, etc.).

Further, a problem exists in that the SIMNET architecture is based on a specific LAN

topology and protocol, Ethernet. This design decision has limited the flexibility of using

SIMNET with other LAN topologies [Case90] and has posed added difficulties when

attempting to link SIMNET systems across Wide Area Networks (WAN). Admittedly,

many of these problems have been addressed and resolved through creative engineering.



7

Routinely, however, the solutions employed have been at the cost of increased network

latency and added processing overhead [Mace95].

Deficiencies notwithstanding, SIMNET remains popular within certain segments of

the training community. It has been successfully employed in a variety of crew level

training scenarios [Mace90] and has provided users with the capability to establish

“virtual” training environments within which multiple participants interact. More

importantly, the SIMNET experience has provided a foundation from which future

distributed simulation architectures may grow.

2. DIS

Despite the popularity of SIMNET, it was recognized that a more extensible

architecture would be needed to meet the anticipated demand for future distributed

simulations. Simply put, future distributed simulations would be required to support

synthetic environments of greater size and diversity than any previously implemented. An

improved infrastructure would be necessary to accommodate the variety of state-of-the-art

simulators under development, as well as providing facilities to exploit the broad range of

older, or legacy, simulators which had long been in use. In addition to the “virtual”

environments hosted under SIMNET, this new infrastructure would be required to support

the integration of computer generated forces, and both “live” and “constructive”

simulations within the same exercise or environment. By definition, “live” simulations

involve the real-time representation of physical weapon systems (i.e. tanks, planes, ships)

within the “virtual” environment, while the term “constructive” simulation infers the use of

automated “wargaming” systems such as the Marine Air Ground Task Force Tactical

Warfare Simulation (MTWS) [IST94].

A major challenge in integrating “live”, “constructive”, and “virtual” simulations into

a single synthetic environment stems from problems in interoperability. As a single-vendor

design, interoperability issues were minimized in SIMNET. However, the requirement to

interface large numbers of systems which differ in both design and architecture is an



8

obvious problem from the standpoint of interoperability. Figure 1 illustrates the breath of

this problem and depicts the variety of applications and weapon systems platforms targeted

for distributed simulation support.

Figure 1. DIS Interoperability Requirements

To address this problem and ensure an adequate level of interoperability among all

simulation participants, the need for a “standardized” approach to distributed simulation

was recognized. Further, an open architecture was dictated to foster continued advances in

D I S

 INFRASTRUCTURE
Tank Simulators

Dismounted Infantry

Live Aircraft

Flight Simulators

              Scripted Scenarios

Computer Generated Forces

Live Radar

          Ships at Sea

Mobile Forces

C2 Systems

Dismounted Infantry

Bridge Simulators



9

the technology and to stimulate the broader involvement of industry in DIS developments.

Finally, a greater degree of flexibility was required to accommodate the growing number

and diversity of DIS protocol entities. It was within this mindset that the concept of DIS

was borne.

B.  DIS PROGRAM OBJECTIVES

The DIS program was initiated in 1989. The intent of this effort is to develop a suitable

architecture to support both existing and projected DIS requirements and to produce the

policies and standards necessary to facilitate the implementation of DIS systems to meet

these needs. Specifically, the principle mission of the DIS effort is to “define an

infrastructure for linking simulations of various types at multiple locations to create

realistic, complex, virtual ‘worlds’ for the simulation of highly interactive

activities.”[IST94] To date, the phrase “highly interactive activities” has inferred the use of

DIS facilities for real time, combat-oriented training. The underlying “user requirement”

for DIS can best be summarized in a statement by an Army flag officer during preparations

for Operation Desert Storm:

  The toughest thing a commander does at each level of command is to
synchronize the battle and make the maximum use of all the different fire
support assets available to him. Being good at just one part isn’t enough.
You have to do it all, and do it in the right sequence with the right timing, or
it all starts to get away from you.
                                                                 BG James T. Scott
                                                                 U.S. Army

And from another source:

The services train individual soldiers, sailors, airman, and marines and
 provide highly trainied combat units and do a very good job. [...But] some
 things we don’t do well. First and foremeost among these is the training
 and exercise of large, joint, or combined forces to fight on short notice.
 [DSBR93]



10

These sentiments underscore the need for collective training on a much larger scale

than that afforded under SIMNET. To this end, the standards and architecture produced

under the DIS program are intended as a vehicle to meet this need. With DIS, the modeling,

simulation, and training communities have been equipped with the means to produce the

type of collective training systems inferred by General Scott and [DSBR93].

Owing to its predominately military emphasis, the current application objectives of the

DIS effort include:

     --  Joint/Combined Training.

     --  Mission Rehearsal.

     --  Development/Evaluation of Tactical Doctrine.

     --  Battle Reconstruction.

     --  Definition of New Combat Systems.

In spite of this particularly military slant, DIS is an excellent example of a “dual use

technology”. “Dual use” is used to describe those technologies considered suitable for both

military and commercial application. The true potential of DIS is much broader than its

military roots would first indicate and its future use may include entertainment, disaster

planning and relief, commercial manufacturing, and tele-medicine among

others[IST94][Tarr94].

C.  IMPLEMENTATION APPROACH

In order to realize the intended objectives noted above, a collaborative effort of

government, academia, and industry has been underway to produce the necessary

“interface standards, communications architectures, management structures, fidelity

indices, technical forums, and other elements necessary to transform heterogeneous

simulations into unified seamless synthetic environments” [IST94]. The complexity of this

task is apparent. From the management standpoint, it is necessary to achieve some sort of

consensus on the many technical issues associated with DIS and encourage both

government and industry investment in DIS technologies. From the engineering standpoint,



11

it is necessary to balance the performance characteristics of the system against the

processing and communication resources known to be available. All this must be done

within the constraints of the real-time performance demanded by DIS users.

Given this challenge, the DIS community has adopted a “design by informal

committee” approach in developing a collection of Industry Consensus Standards to govern

DIS. This approach to standards development is somewhat unique within military circles.

Even describing the organization is problematic:

The structure behind the DIS movement is unique and a bit difficult to
describe. There are no articles of incorporation, charters, bylaws,
organizational charts, parent organizations, or other elements typical of an
organization. What organization there is, is modeled after industry standards
development efforts. That is, groups of volunteers gather periodically, do
research, debate relevant issues, form consensus, and publish standards. All
groups are self-directed and self-governing. [IST94]

In spite of its somewhat “fuzzy” organizational structure,  the DIS effort is not without

a central administrative authority. The Institute for Simulation and Training (IST), part of

the University of Central Florida, has been tasked with coordinating the DIS standards

process. Jointly funded by the U.S. Army’s Simulation, Training, and Instrumentation

Command (STRICOM) and the Defense Modeling and Simulation Office (DMSO), the

IST is responsible for orchestrating the processing and publication of completed DIS

standards as well as coordinating the semi-annual workshops which provide a forum for

DIS discussions.

Recent interest in DIS can best be gauged by attendance at the semi-annual DIS

workshops. The first workshop, convened in August 1989, was attended by more than 50

individuals from government and industry. More recent workshops have attracted more

than one thousand participants. As attendance has grown, so has the number of technical

working groups staffed by attendees. Each working group is tasked with addressing some

specific DIS issue and may spawn “tiger teams” when necessary to resolve key technical

problems.Consistent with the overall approach to DIS development, membership in the



12

working groups is informal and open to any and all interested. At last count, nearly 50

individual working groups and subgroups have been established to handle specific DIS

standards issues. The emphasis of current work groups include:

--   Administration --   Architecture

--  Communication/Security --   C3I/EW

--   Computer Generated Forces --   C4I

--   Credible Uses for DIS --   Distributed Objects

--   Dead Reckoning --   Data Standards/Repositories

--   Emissions --   Data Enumeration

--   Fidelity Description --   Field Instrumentation

--  Interoperability --  Logistics

--   Protocols --   Steering Committee

--   Terrain Models --   Simulation Management

--   Testing --   Training

--   User Issues --   Verification and Validation

In spite of its loosely defined structure, the DIS program has been successful in

generating a number of standards and guidance documents relative to DIS. Notable among

the work produced to date is a collection of documents defining a standard communications

architecture for DIS [IST92][IST93a][IST94a], a protocol standard adopted by the Institute

of Electrical and Electronics Engineers (IEEE)[IEEE93], and a vision document which

presents the problems, goals, and direction of future DIS development[IST94].

D.  FUTURE GOALS

In its most recent survey of critical technical issues, the DIS community has

enumerated a number of key objectives to guide future research [IST94]. A discussion of

each and every objective is beyond the scope of this work. However, several of the research

areas cited are pertinent to the subject matter of this thesis in that they relate to the structure,

content, and exchange of Protocol Data Units. These include:



13

1. Functional Area Coverage of PDUs

As the number of DIS participants grows, so will the scope and the type of scenarios

that must be supported. It is anticipated that the use of DIS will expand to encompass many

new military applications as well as applications in other areas of government and industry.

2. Information Content and Bandwidth Efficiency

In any network application, the conservation of bandwidth is an important issue. DIS

is no exception. As the scope of distributed simulations grow and the number of

participants increase, so will the demand for additional network bandwidth. This situation

dictates the use of a protocol which is generally optimized in terms of bandwidth

consumption. To the greatest extent possible, the DIS protocol must incorporate any

mechanism available to balance the information content of each PDU with the aggregate

bandwidth consumed.

3. Streamline PDUs

 One means of achieving a certain degree of bandwidth conservation is to optimize the

data elements exchanged across the network. In the case of the DIS protocol, this entails an

examination of the form, content, and adaptability of both present and planned PDUs.

Changes to the current PDU structure may include elimination of static data fields,

compaction of data elements, and the use of tailorable PDUs.

4. Increased Number of Entities

 Current ARPA estimates indicate the need to support future simulations with more

than 100,000 participating entities [IST94]. It is anticipated that the entity population will

include a large contingent of live players and an equally large collection of virtual and

constructive simulations...all integrated into a single synthetic environment. The DIS

protocol must accommodate the “scalable” nature of future distributed simulations.



14

5. Optional Communications Profiles

The current profile to support DIS communications is based upon the internet family

of protocols (UDP, TCP, IP). This profile provides the communication services necessary

to support present day, DIS scenarios. However, as applications grow in size, complexity,

and range of use, the suitability of a single profile to render all services in unlikely. A

collection of standard profiles will be required, each tailored to a specific application

domain [IST94].

6. Enhanced Interoperability

 Within the DIS communications architecture, a principle objective is that of achieving

and maintaining an exceptionally high degree of interoperability [IST93a]. The DIS

approach in this regard is to specify a minimum set of standards to which all DIS-compliant

platforms must adhere. The standards include the form and content of PDUs as well as the

mechanisms for exchanging data. The ultimate goal is to ensure that existing systems

remain compliant while allowing the flexibility necessary for the DIS architecture to

mature and evolve.

E.   THESIS-RELATED WORK

The specific intent of this thesis is to present a method and mechanism by which

current DIS protocol entities may be modeled, manipulated, and potentially improved. It is

hoped that this work will provide a foundation from which future protocol improvements

might grow. In any event, this effort is offered as a contribution to the ever-growing body

of work dedicated to DIS improvements.

While there has been little, if any, past work which directly correlates to the focus of

this thesis, there has been a substantial amount of effort aimed at extending the capabilities

of DIS. In my view, past DIS work may be classified as “evolutionary”, “revolutionary”,

or included as part of a collection of “tools and utilities”.



15

1. Evolutionary

Owing to the relative infancy of DIS as a technology, the bulk of the documented DIS

work has been “evolutionary” in nature. The concept of “evolutionary” work relates to any

and all efforts necessary to foster the “maturing” process of a given technology. In this

view, the bulk of the DIS development process could be considered an “evolutionary”

effort, specifically intended to further DIS technology by means of formulating, publishing,

and enforcing standards. Research which would typically be considered “evolutionary”

would include proposals to add new DIS entities, adopt new algorithms, and fine tune

existing features of the protocol. The Proceedings of the semi-annual DIS workshops are

replete with examples of this type of “evolutionary” work. While the volume of

“evolutionary” work related to this thesis is sparse, it does exist. For example, in [Prat95],

several refinements to the existing protocol were proposed as a means to conserve network

bandwidth. The proposed refinements included changes to both the form and content of

current DIS protocol entities. The Protocol Support Utility developed as part of this thesis

will assist in implementing the type of protocol changes which were proposed.

2. Revolutionary

For the purpose of this thesis, “revolutionary” work is that which significantly alters

the course of a given technology. As a relatively new technology, the body of

“revolutionary” DIS work is much smaller than that considered “evolutionary”. A typical

example of this type of work is the adaptation of multicast protocols and the introduction

of an Area of Interest Manager [Mace95] concept in DIS. While not directly related to this

thesis effort, this work is significant in its approach to bandwidth conservation and DIS

scalability. Additional work considered “revolutionary” (though only remotely related to

this thesis) would include the introduction of Distributed Object Technology [Peck95], the

use of self-describing protocols [Dick94], migratory objects [Felt95], or intelligent

agents[Calv94][Wayn95]. In each case, a shift in the overall DIS paradigm would be

required, some more radical a shift than others. Given the expected growth of DIS, and the



16

attendant burden placed upon the communications architecture, the exploration of

alternative protocols is a worthwhile endeavor.

3. Tools and Utilities

The final body of work potentially related to this thesis is that of tools and utilities. The

Protocol Support Utility developed as part of this thesis is intended as a protocol

development aid. To date, the lion-share of tools developed for DIS have focused on real-

time data collection and logging, data correlation [Worl95], and simulation management

[Milg95]. Additional work has been done in producing tools suitable for simulating DIS

network performance [Bate94] and a Scaleability Tools Set has been developed for the

construction and generation of DIS scenarios[Vrab93]. It appears that little, if any, past

work has been done in formulating tools to support the authoring, editing, and production

of DIS PDUs and their associated data elements. As such, this work may provide yet

another vehicle for DIS protocol refinement.,



17

III.  COMMUNICATIONS ARCHITECTURE for DIS (CADIS)

Distributed Interactive Simulation(DIS). A time and space coherent
synthetic representation of world environments designed for linking the
interactive, free play activities of people in operational exercises. The
synthetic environment is created through real time exchange of data units
between distributed,computationally autonomous nodes comprised of
entities in the form of simulations, simulators, and instrumented equipment
interconnected through standard communicative services. The computational
nodes may be presentin one location or may bedistributed geographically.
[IST94a]

Due to its distributed nature, any discussion of DIS must necessarily begin with a look

at the communications architecture on which it is based. This chapter presents an overview

of the ISO/OSI Reference Model and provides a correlation of DIS functions to the specific

layers within this Model. Further, a discussion of the design and performance criteria of the

Communications Architecture for DIS (CADIS) is presented.

A.  THE ISO/OSI REFERENCE MODEL

The International Organization of Standardization (ISO) has proposed a 7-layer model

to be used in describing the computer-communication process. The Open Systems

Interconnection (OSI) Reference Model (RM) [ISO84], as it is known, has been broadly

accepted as a standard within the data communications community. This model provides a

straightforward means to abstract and visualize the different processes and protocols

associated with end-to-end, computer communications. Specifically, this tool was

“developed as a model for computer-communications architectures and as a framework for

developing protocol standards” [Stal94]. The ISO/OSI Reference Model, depicted in

Figure 2, is based upon a hierarchy of the following functional layers:

1. Physical Layer

The first, and lowest, layer of the model governs the physical, electrical, and

mechanical characteristics of the communications channel or interface. The Physical layer



18

addresses the procedural issues involved in accessing the physical communications

medium and is concerned with the transmission and reception of unstructured bit streams.

2. Data Link Layer

The Data Link layer is principally concerned with the reliable transfer of data across

the physical medium. It provides for the blocking (or framing) of data and covers

synchronization, error control, and flow control.

Figure 2. OSI Reference Model

3. Network Layer

The Network layer provides a level of isolation between those layers associated with

the physical aspects of the communications process and those concerned with more logical

functions. In effect, this layer isolates the upper layers of the model from the lower level

switching technologies and electrical interfaces used to connect one system to another.

Functionally, the responsibility for establishing, maintaining, and terminating network

connections resides at this layer.

Layer:
Application

Session

Network

7

Presentation

Transport

Data Link

Physical

6

5

4

3

2

1



19

4. Transport Layer

While the lower three layers of the model support the physical interface to the

transmission path, the Transport layer provides for the management of reliable, transparent,

end-to-end connections between connected systems. The responsibility for coordinating

error correction and flow control can be found at this layer. By design, all layers residing

above the Transport layer operate on the assumption of an error-free communications

channel.

5. Session Layer

 In order for two applications to exchange information, it is necessary that a logical

connection between the applications be established. This connection is termed a “session”

and must be managed in a manner similar to the physical connections supported at the

lower layers of the model. The Session layer provides the control structure necessary for

one application to establish a session and cooperatively communicate with another.

6. Presentation Layer

It is often the case that a session may be established between two applications which,

for one reason or another, may represent and store their internal data differently. This

difference in syntax is a common occurrence on networks connecting heterogeneous nodes

and must be resolved if the reliable exchange of data is to be possible. The Presentation

layer provides facilities for syntax transformation and hence, insulates the application

processes from potential differences in data representation.

7. Application Layer

The Applications layer, uppermost in the ISO/OSI model, is ultimately responsible for

the exchange of information between applications running on connected hosts. This layer

provides the interface mechanism (routinely termed an API or Application Programmers

Interface) by which a given application can access the communications facilities afforded

through the lower layers of the model.



20

B.  CADIS

The communications infrastructure associated with DIS includes functions, services,

and protocols found at every layer in the OSI model. Those services which are unique to

DIS applications are collectively termed CADIS. By definition, the purpose of CADIS is

to “provide an appropriate interconnected environment for effective integration of locally

and globally distributed simulation entities” [IST92]. More succinctly, CADIS specifies

the communications services and profiles necessary to support a DIS exercise and

establishes the required interfaces to the subordinate layer protocols (Transport layer and

below) upon which it (CADIS) depends.

1. CADIS Design Philosophy

The CADIS design is driven by the nature of the communication services that must be

provided to DIS users. Towards this end, CADIS has three principle areas of

emphasis.These include the communication service requirements necessary to support a

DIS exercise, the performance criteria needed to meet the real-time demands of DIS

applications, and the error detection and synchronization necessary to ensure that the

communications subsystem works as intended.

a. Communication Service Requirements

CADIS communication service requirements are tailored to meet the diverse

needs of the current DIS community. At present, there are three classes of communication

services available to DIS implementors. Within each class are options for either multicast

or unicast communication modes.

In the unicast mode, a point-to-point exchange of simulation data is supported.

In this approach, a single simulation host may transmit one or more PDUs to a single

receiving host. By contrast, multicast services allow the sending host to transmit data to

specifically addressed groups of one or more receiving hosts. In simple terms, unicast

providesone-to-one communication services while multicast providesone-to-many.



21

A broadcast mode of transmission is also provided, though this is in reality a

special case of multicast. In the broadcast mode, a single host message is simultaneously

transmitted to every host connected to the network. This mode may be best described as a

one-to-all approach.

From the DIS standpoint, multicast is routinely the transmission mode of choice.

In part, the rationale for multicast use lies in the ability to execute multiple DIS exercises

simultaneously. This may be done by establishing individual multicast groups for each

exercise. Additionally, the use of multicast addressing as a means of reducing DIS

bandwidth requirements has been the topic of recent research [Mace90].

The three communication service classes provided by DIS are discussed below.

(1)   Class 1, Best effort multicast - This class of service provides a

multicast adaptation of what is known as ‘best effort’ service. Best effort is, by definition,

a connectionless, unreliable communications scheme. By this, it is meant that data packets

are forwarded across the network with no assurance or verification that the packets ever

arrive at the destination node. No acknowledgments are expected by transmitting nodes,

nor are any sent by the nodes receiving data. By eliminating the need to transmit data

acknowledgments, network traffic is minimized and system performance enhanced. In a

trade-off between performance and reliability, many implementors will opt to conserve

network bandwidth at the expense of reliability. This is particularly true in real-time

application, and generally the case in DIS.

(2)  Class 2, Best effort unicast- The second communication service

class provided under CADIS provides for point-to-point connectivity using the a best effort

protocol discussed above.

(3) Class 3, Reliable unicast - The final communication service class

provides for the “reliable” exchange of data. The term “reliable” infers the need for some

type of acknowledgment scheme to validate the transmission and receipt of data, and a data



22

retransmission scheme to resend any data that may be lost or corrupted. This approach is

generally employed for synchronization or application level management functions.

b. CADIS Performance Criteria

To ensure the coherence of DIS simulations and the near real-time service

demanded by many DIS applications, CADIS defines specific criteria relating to DIS

network performance.

(1) Latency - For performance purposes, DIS applications are classifies

as requiring either tightly-coupled or loosely-coupled entity-to-entity interactions.

Simulated entities which may be located in close physical proximity to one another would

be considered tightly-coupled. In a tightly-coupled scenario, the actions (fire, maneuver,

etc.) of one entity must be immediately accounted for by surrounding entities. By contrast,

loosely-coupled entities would be those more separated by time or distance and entity-to-

entity interactions would be less time critical. A typical tightly-coupled example would be

that of fighter aircraft flying in close combat formation. Individual aircraft landing at

different airports would require little interaction, hence be loosely-coupled.

Permissible DIS latencies are defined with respect to the ISO/OSI

Reference Model discussed earlier in this chapter.Transport-to-Transport latency is

defined as the time necessary to pass a PDU from the Transport layer service of one

Simulation Host, across the network, to the Transport layer service of another. The current

CADIS standard specifies an allowableTransport-toTransport  latency of 300

milliseconds for loosely-coupledapplications and100 millisecondsfor the more time

critical tightly-coupledscenarios [IST95].

A second CADIS-specified latency standard is that ofTransport-to-

Physical latency, the time necessary for simulation data to pass from the Transport layer

services to the Physical layer services of a given Simulation Host. An allowable

Transport-to-Physical latency of10 milliseconds is cited under CADIS for bothtightly-

andloosely-coupledapplications [IST95].



23

(2)   Bandwidth -DIS bandwidth requirements are exercise dependent and

not specifically established under CADIS. The required exercise bandwidth may be

affected by the number entities simulated and the mixture and type of entities in a given

scenario. Also, security overhead and the choice of dead reckoning algorithms may have

an impact on the demand for DIS bandwidth [IST93a].

(3)   Error Detection and Synchronization -Error detection in DIS refers

to the ability to detect corrupted PDUs. CADIS relies upon the checksum mechanisms of

lower layer protocols (TCP and UDP, discussed below) for this facility. No error correction

features are established under CADIS.

The means of synchronizing DIS exercises is application dependent.

CADIS allows systems developers the latitude to implement the  synchronization

mechanism which best fits the needs of the application domain. Past implementations in

this area  have include the use of the Global Positioning System (GPS) and  other external

time sources.

2. Related Protocols

As noted earlier, the upper layer protocols assume that an error free communications

channel exists from DIS node to DIS node. By virtue of this assumption, the DIS

infrastructure is heavily reliant on lower layer protocols to establish and maintain the

required connectivity. Additionally, DIS relies upon these protocols as sole means of error

detection, as noted above. Today, most DIS applications support and employ the Internet

Protocol Suite for Transport and Data Link layer services. This family of protocols is

comprised of:

a. Transmission Control Protocol (TCP)

TCP is the Transport layer protocol used for the “reliable” exchange of

simulation data under DIS. As mentioned earlier, “reliable” transmission schemes require

the use of some sort of acknowledgment mechanism to ensure that data is successfully

transmitted and received. Also, a retransmission mechanism is required to rebroadcast any



24

data that is lost or corrupted in the communications process. Obviously, the benefit of

“reliability” is at the expense of protocol complexity and processing overhead.

As a “reliable”, connection-oriented, point-to-point protocol (i.e. unicast), TCP

is well suited for applications that require reliability over performance. Within DIS, TCP

use is generally limited to simulation management functions [IST95]. The TCP protocol is

formally specified in a standard issued by ISO (RFC 793) and the design and use of TCP

and other internet protocols is covered in substantial detail in [Rose91].

b. User Datagram Protocol (UDP)

UDP is another Transport layer protocol and is an alternative to TCP. In contrast

to TCP, UDP is not considered “reliable”. It has no facility for acknowledgments nor data

retransmission. If messages are lost or corrupted during the communications process, no

action is taken. By removing the overhead associated with reliability, a more streamlined

protocol, UDP, is possible. UDP is a connectionless, best effort approach which can

support multicast transmission modes and is formally specified in a standard issued by ISO

(RFC 768). For most DIS applications, reducing network traffic to conserve bandwidth and

minimize latencies is more important that the type of “reliability” afforded by TCP. Hence,

UDP is generally the protocol of choice.

c. Internet Protocol (IP)

IP is the Network layer protocol on which CADIS relies. During message

transmission, the purpose of the IP protocol is to encapsulate the Transport layer data in an

envelope (IP datagram) that is suitable for transmission across the network. During the

receive process, the envelope is “opened” and the Transport layer data is passed to the

appropriate Transport layer protocol.

As would be expected, IP supports both TCP and UDP protocols and provides

the source and destination addressing needed to pass simulation data from one Host to

another. The IP protocol is formally specified in an ISO-issued standard (RFC 791).



25

3. DIS Protocol Suites

Initially, the communications architecture of DIS was to evolve in three phases. Each

phase was to be distinguished by the collection of communication services and protocols

on which it was based. In this manner, DIS would evolve from the protocol suites

commonly found in use today, to the protocols which had been targeted (or mandated) for

the future.

The first phase was to be based on the internet protocol family discussed earlier. This

protocol was considered mature by industry standards and would provide a suitable starting

point for DIS implementations. In fact, it is this protocol suite that is predominately used

in DIS today.

In the second phase of this evolution, the DIS architecture would migrate to a family

of OSI protocols which were considered compliant with the interface standards published

by ISO. Theoretically, the OSI protocol suite was considered a more robust approach to

distributed communications than that offered under the internet family. However, the OSI

suite had not been completely standardized and was not considered to be a mature

collection of protocols.

The final phase was to migrate DIS to a fully GOSIP-compliant class of protocols. The

GOSIP or Government Open Systems Interconnection Profile protocol family is a

mandated U.S. government adaptation of the OSI suite. Similar to its OSI counterpart, the

GOSIP protocols were not yet mature nor suitable for full scale DIS use.

While the concept of successively migrating from one protocol suite to the next was

sound in theory, it was somewhat lacking in application. The OSI and GOSIP protocol

suites were not widely embraced in industry and, as such, were evolving at a slow pace.

The internet suite had achieved broad-based acceptance and many implementors were

comfortable with its use. More importantly, the DIS community recognized that the range

of potential DIS applications seemed to grow without bound. As the range of applications

grew, so did the diversity in demands placed upon the communications infrastructure.

Given this scenario, the adoption of a single protocol suite for DIS use might



26

unintentionally limit the size of the DIS application domain. Further, it is unlikely that a

single family of protocols would be capable of providing communication services for every

potential implementation of DIS.

As an alternative to the phased implementation of specific protocol suites, the concept

of multiple communicationprofiles was proposed [Lope94]. Under this proposal, DIS

implementations would not be limited to a single protocol suite. Instead, a collection of

standard profiles would be approved for DIS use. This approach offers a great deal more

flexibility in meeting future DIS demands. The number of profiles is expected to grow as

the use of DIS becomes more widespread. This proposal was only recently adopted within

the DIS community and to date, only two profiles have been approved. Within each profile,

three classes of services (as discussed earlier in this chapter) are provided. The current

profiles are intended for “traditional LAN/WAN” environments and include:

a. Profile-1: Internet-Broadcast

This profile is based upon the internet protocol suite and establishes three

classifications of service:

--   Class 1: Best Effort multicast with broadcast addressing.

--   Class 2: Best Effort unicast using UDP/IP.

--   Class 3: Reliable unicast using TCP/IP.

b. Profile-2: Internet-Multicast

This profile is similarly based on the internet family and support the following

classes:

--   Class 1: Best Effort multicast using UDP over IP/MC.

--   Class 2: Best Effort unicast using UDP/IP.

--   Class 3: Reliable unicast using TCP/IP.



27

C.  DIS-TO-ISO/OSI CORRELATION

The principle value of the OSI Reference Model is as a means of abstraction. A given

communications architecture may be distilled into a series of clearly defined system

functions, and each function may be mapped to an appropriate layer in the model. By this

means, even the most complex architectures may be reduced to a more understandable

form. The DIS architecture may be similarly modeled.

1. Standards

Figure 2 illustrates the relationship between specific layers of the Reference Model and

the variety of standards that apply to DIS communications. The documents applicable to

this discussion include site dependent LAN standards, Transport/Network layer protocol

standards, and those standards which apply uniquely to DIS.

a. DIS Standards

The DIS Standards are, in fact, a family of standards and draft documents which

serve as guidelines for DIS implementation and use. These standards govern the protocol

[IEEE93][IST93b], the communications architecture [IST92][IST94a], and the data types

and values [IST93] associated with DIS. As depicted in Figure 3, the DIS standards

generally apply only to the upper three layers of the ISO Model. This makes sense in that

the upper layers (Session, Presentation, and Application) are concerned specifically with

those functions associated with the host-to-host exchange of applications data. By

definition, DIS is considered to be an applications layer protocol. This definition

specifically refers to the definition and exchange of DIS PDU...clearly an application layer

function. Not surprisingly, the DIS protocol is defined in a single, application level

standard [IEEE93] which establishes the form and content of individual protocol elements.

Similarly, the DIS enumeration data (a Presentation Layer issue) is set forth in a separate,

but complimentary standard [IST93] which defines the acceptable range of values that each

data element in DIS may assume.



28

Figure 3. DIS-to-OSI Standards Correlation

b. RFC 768/RFC 793/RFC 791

The Request For Comment (RFC) series of standards are published by ISO for

international consideration. The three RFC standards associated with DIS govern the

Transport and Network layer protocols (discussed previously) on which DIS relies.

c. Local LAN Standard

The Local LAN Standards govern the low level interface to the transmission

media. The most widely used of these standards are issued by the Institute for Electrical and

Electronic Engineers (IEEE) and cover a variety of LAN-oriented protocols (Ethernet,

Token Ring, etc.).

Layer:
Application

Session

Network

7

Presentation

Transport

Data Link

Physical

6

5

4

3

2

1

DIS Standards

UDP (RFC 768)
TCP (RFC 793)

 IP (RFC 791)

Local LAN Standard



29

2. Functional Correlation

DIS is considered to be an applications protocol. In this context, the term application

refers to services provided in the upper three layers of the ISO/OSI model. This sort of

simplification of the OSI model is common. Table 1 depicts the correlation between

specific DIS functions and the corresponding layers of the Reference Model

[IST95][Zes93].

Frequently, the protocols associated with the Session, Presentation, and Application

layers of the model will be collectively referred to as a “process” or “applications” layer

protocol [Stev90]. For the purpose of this thesis, the term “applications layer protocol” will

be used when discussing the form, content, and use of DIS PDUs.

Layer Number Layer Name DIS Content

7 Application Type of data exchanged (positional, orientation, etc.).
Rules for determining effects of events (e.g. collision).
Remote Entity Approximation (Dead Reckoning).

6 Presentation PDU format and interpretation.
Representation of position, orientation, units, and encoding.

5 Session Procedure for starting, stopping, joining and exiting an exercise.

4 Transport Source and destination process-to-process addressing.
Packet Assembly/disassembly, if required.
Ordering, if required.
Reliability, if required.

3 Network Source and destination host addressing.

2 Data Link Framing onto physical link.
Logical link control.
Medium access and conflict resolution.

1 Physical Physical characteristics of the medium.

Table 1. DIS-ISO/OSI Functional Correlation



30



31

IV.  DIS APPLICATIONS PROTOCOL

By design, the CADIS standard [IST94a] defines a communications subsystem across

which real-time simulation data may be carried. As was noted in the last chapter, the scope

of CADIS is limited to the specific communication services and profiles which are

supported under DIS. A second, and equally important part of the DIS communications

infrastructure is the Applications Protocol. This chapter provides an overview of this

protocol and of its principle data elements.

A.  PHILOSOPHY

The Standard for Information Technology, Protocols for Distributed Interactive

Simulation[IEEE93] establishes the form and content of the individual data entities that

must be exchanged during a given DIS exercise. The purpose of this standard is to provide

for the common identification and representation of DIS data items. Further, the standard

addresses the manner in which these data entities may be collected into a meaningful

message, the PDU. Finally, this standard dictates the protocol to be used by exercise

participants in exchanging DIS PDUs and defines the key algorithms (e.g. dead reckoning)

[IST94] that must be implemented in each Simulation Host.

The DIS protocol standard (DIS 1.0) was first adopted by the IEEE on 17 March 1993

[IEEE93]. Subsequent updates to this directive have been produced as draft standards, and

are generally referred to as the DIS 2.x protocol series. As of the date this thesis was

prepared, a more current version of the IEEE standard is scheduled to be released based

upon the DIS 2.1 draft.

The revised standard, IEEE 1278.1, reflects recent refinements made in the protocol

and associated data entities. Specific improvements include added facilities to support:

--  simulated radio communications, both voice and tactical data link.

--   characterization of electromagnetic emissions as part of electronic

warfare scenarios.

--   added Simulation Management features.



32

The revision of the DIS protocol standard is indicative of the manner in which DIS is

expected to evolve. As new requirements surface, the protocol is to be extended to meet the

new demands. As deficiencies are encountered, the protocol will be refined and corrected.

B.  DESIGN OBJECTIVES

To large extent, the design objectives of the DIS protocol have been inherited from its

predecessor, SIMNET. These objectives reflect the decisions and compromises made to

meet the competing demands inherent in a DIS distributed environment...real time

performance, minimal latencies in entity interaction, and efficient bandwidth utilization.

The design principles on which the DIS protocol is based include [IST94]:

1. Autonomy of Simulation Hosts

Every DIS participant is required to broadcast pertinent information about itself to all

other participants in the exercise. Receiving nodes will determine the applicability of any

messages that they receive and will assess the impact of any event on the entity that they

represent. Sending nodes have no responsibility in determining the impact of their actions,

only reporting that the action has occurred. In this way, no single entity is dependent upon

another to exist in the simulated environment.

2. Object/Event-based Architecture

In this approach, a simulated entity is required to possess and maintain information on

every other entity involved in the exercise. The information about static or non-changing

objects (e.g. fixed terrain features) is generally provided as part of the exercise initialization

data. Dynamic entities are expected to notify all other participants of their movements or

activities as they occur. This notification process involves the transmission and reception

of PDUs.

3. Minimized Transmission of State Change Information

One approach in minimizing the demand for network bandwidth is to restrict the

frequency at which  entities provide updates on their status within the exercise. Under DIS,



33

participating entities need only transmit update to other entities when a change in their last

reported state has occurred. Given no change in state, updates are limited to a

predetermined time interval (generally 5 seconds) and merely serve as an “I’m still alive”-

type message.

4. Use of Dead Reckoning Algorithms

A second avenue in minimizing the demand for bandwidth is the use of dead reckoning

algorithms. In this approach, each entity maintains a dead reckoning “model” of itself and

every other dynamic entity in the exercise. This model is used to extrapolate the changing

position of a moving entity between required state updates. Basically, the model is used to

project the path and rate of movement of the modeled entity over a given period of time.

The modeled entity will constantly monitor the accuracy of its own dead reckoning model

and compare the model’s predictions with the entities “actual” position. If the projection of

the model exceeds a predefined error threshold, a PDU is issued across the network. In the

absence of this update, the other participants in the exercise will use the model’s output to

establish the position and movement of the modeled object.

The use of dead reckoning algorithms minimizes the need for state updates due to

changes in an object’s position. As long as the movement of a given entity is accurately

predicted, only periodic update PDUs will be generated and received.

5. Obligation to Transmit “Ground Truth”

It is expected that every participant in the exercise is an honest player. The coherency

of the simulated environment is tied to accuracy of the data exchanged between

participants.

C.  PROTOCOL DATA UNITS (PDUs)

Within a DIS exercise, Protocol Data Units serve as the “lingua franca” or common

language by which participating simulators may communicate. Collectively, DIS PDUs

define the form and content of information that is to be passed between DIS hosts. The use



34

of standard data messages, ala PDUs, tends to isolate the communications process from the

design or architecture of individual connected nodes. At the implementation level, it

matters little what processor a given host may contain, or what LAN is used to link

simulation participants. The important aspect in this process is that every host use the same

message format and rules for exchanging simulation data. This is the essence of the DIS

protocol and rationale behind the concept of a PDU.

In DIS, state changes and any event information pertaining to an exercise is

communicated through the use of a rigidly specified PDU. The current protocol standard

defines twenty-seven different PDUs, each tailored to satisfy a particular DIS

communications requirement.

The PDUs defined in the current standard are organized into five application-related

families. The following depicts each family and its associated PDUs:

1. Entity Information/Interaction Protocol Family

--   Entity State PDU --   Collision PDU

2. Warfare Protocol Family

--   Fire PDU --   Detonation PDU

3. Logistics Protocol Family

--   Service Request PDU --   Resupply Offer PDU

--   Resupply Receive PDU --   Resupply Cancel PDU

--   Repair Complete PDU --   Repair Response PDU

4. Simulation Management Protocol Family

--   Create Entity PDU --   Remove Entity PDU

--   Start-Resume PDU --   Stop-Freeze PDU

--   Acknowledgment PDU --   Action Request PDU

--   Action Response PDU --   Data Query PDU



35

--   Set Data PDU --   Data PDU

--   Event Report PDU --   Message PDU

5. Distributed Emission Regeneration Family

--   EM Emission PDU --   Designator PDU

--   Transmitter PDU --   Signal PDU

--   Receiver PDU

Of the PDUs defined above, only four are specifically intended to describe entity

interaction. The Entity State PDU, as its name would suggest, is used to communicate state

information about a given entity. This information generally includes position, movement,

and appearance. The Fire and Detonation PDUs are used to describe the characteristics of

simulated weapons/ordnance and their effect when used. Finally, the Collision PDU is used

to convey physical contact between simulated entities.

The remaining PDUs are used primarily for simulation management or when other

aspects of a combat environment (logistic support or tactical communications) are to be

simulated.

D.  PDU STRUCTURE

From the interoperability standpoint, the principle role of the DIS protocol is to

establish “a standard for entity definition and entity communication” [IST94]. To this end,

the protocol standard [IEEE93] dictates the structure and use of each DIS PDU. As an

example, Table 2 depicts the form and content of the Entity State PDU (ESPDU). The table

reflects the size and composition of the DIS data elements which constitute the ESPDU.

These data elements (as well as all others used in building PDUs) are likewise defined in

the protocol standard.



36

The form, size, and content of the Entity State PDU is typical of that found in the other

twenty-six PDUs defined in the current protocol standard.

ESPDU Data Element Data Fields
Field Size

(bytes)

PDU Header      Protocol Version
       Exercise ID
       PDU Type
       Protocol Family
       Time Stamp
       PDU Length
       Padding

(1)
(1)
(1)
(1)
(4)
(2)

(variable)

Entity ID      Site
       Application
       Entity

(2)
(2)
(2)

Force ID (1)

# Articulation Parameters                 n (1)

Entity Type   Entity Kind
       Domain
       Country
       Category
       SubCategory
       Specific
       Extra

(1)
(1)
(2)
(1)
(1)
(1)
(1)

Alternate Entity Type  (same as Entity Type) (8)

Linear Velocity  X,Y,Z Components (12)

Location      X,Y,Z Components (24)

Orientation        Psi, Theta, Phi (12)

Appearance (4)

Dead Reckoning (DR)        DR Parameter Record (40)

Entity Markings        Entity Marking Record (12)

Capabilities (4)

Articulation Parameters (AP)        AP Record (n * 16)

Table 2. Structure and Content of the Entity State PDU



37

As illustrated in Table 2, PDUs may be of variable length (note the Articulation

Parameters). Whether of fixed or variable length, PDUs tend to be quite large. In general,

PDU size and transmission rates have a direct relationship to the bandwidth needed to

support a DIS exercise. Recognizing this fact, the CADIS standard recommends that PDUs

not exceed 1400 octets (bytes) in length [IST95].

 The issue of PDU size and information content becomes particularly important when

one considers simulated scenarios of the future in which more than 100,000 entities must

interact [IST94]. Recent estimates indicate that to support an exercise of this magnitude,

each participant using the DIS existing protocol would require bandwidth of nearly of 375

million bits-per-second (Mbps) [Mace95]. This is nearly four times the capacity provided

by the fastest LANs (e.g. FDDI Token Ring, Fast Ethernet, etc.) of today [Stal94]. It is not

likely that near-term advances in communications science will afford this level of

performance. In the absence of some revolutionary leap in communications technology,

other means of “scaling” the DIS protocol must be found if it is to be used in future

distributed simulations.



38



39

V.  DIS DESCRIPTIVE GRAMMAR

At the application layer, the data structures exchanged by protocol
entities are potentially much more complex. Therefore, it is necessary to
introduce a new formalism for describing these structures.

This new formalism is termed an “abstract syntax,”...
                                                                      Marshall T. Rose [Rose91]

The stated goal of this work is to introduce both a method and a mechanism to

accommodate future efforts in DIS protocol development and improvement. In part, the

intent is to provide a means by which new or improved DIS protocol entities (PDUs and

data elements) may be formally described or modeled. Subsequently, the protocol model is

to be automatically translated into the programming language source code necessary to

implement the redefined protocol. This chapter discusses the first steps in this process, the

formulation and application of a descriptive grammar for DIS use.

A.  TAXONOMY

The approach taken in preparing this thesis was a three phased endeavor. The first

phase was to formulate a descriptive grammar, or abstract syntax, which could be used to

model DIS PDUs and related data elements. The second phase of effort involved applying

the formulated grammar to the protocol entities in the current DIS standard to produce a

structured specification of the protocol. The final phase, discussed in the next chapter,

involved the development and implementation of an automated tool to process the

grammar-based specification of DIS.

B.  STRUCTURED GRAMMAR

The benefit of a structured grammar (or abstract syntax) lies in its ability to simplify

the representation of a complex problem or concept. Much like the ISO/OSI Reference

Model, a grammar may be used as a method of abstraction. Formal grammars, of one type

or another, are commonplace in every field of science. Most often, these grammars are used



40

as a means to better understand or manage things that would otherwise be unmanageable

or impossible to fathom.

Within the field of computer science, grammars are fundamental to compiler design,

automata theory, and the study and implementation of programming languages [VNR93].

Likewise, structured grammars are routinely used as a tool in data communications to

describe the formal rules (or protocols) needed to support the exchange of information

between communicating nodes. Given the widespread use of grammars in similar

applications, the use of a structured syntax to describe the DIS protocol seems reasonable.

The use of a formal grammar was not the only abstraction method considered in

describing DIS. In fact, several means of modeling the protocol, both graphical and

grammar-based, were explored. The graphical techniques (e.g. Finite State Machine

models) were rejected because of the difficulties anticipated when ultimately translating the

graphically modeled protocol into the source code needed for host system implementation.

By contrast, parsing and translating a grammar-based syntax is a fairly straightforward

process. In spite of the adage that “a picture is worth a thousand words”, a grammar-based

approach was chosen for this effort in protocol modeling.

Due likely to the manner in which DIS has evolved, no formal specification of the

protocol appears to exist. As such, the selection of a particular grammar to model DIS was

considered an important issue. Preliminary investigation revealed several grammars

considered suitable for DIS use, most notably, Abstract Syntax Notation 1 (ASN.1).

ASN.1 is an abstraction grammar developed specifically as an application layer

syntax. It is formally specified in an ISO standard [ITU88] and is used as a tool to define

the structure, content, and management of application layer entities (PDUs and data

elements) [Rose91]. At first glance, ASN.1 appeared to be the perfect choice as a

descriptive grammar for DIS. Some tout ASN.1 as “the network programming language of

the 90’s” [Rose91] and equate its future popularity with that of the “C” programming

language in the 80’s. However, the same sources admit that the “bells and whistles of ASN.1



41

lead to unnecessary complexity” and that “prudence” generally “dictates a minimalist

approach be taken” when modeling communications protocols.

For the purpose of this thesis, the grammar chosen to model DIS was required to

possess the following attributes:

--   sufficiently flexible to model all DIS data elements.

--   minimally complex in terms of readability and use.

--   easily parsed.

--   generally accepted for use in similar applications.

ASN.1 was suited for this type of  application. It possessed the necessary constructs to

describe every DIS PDU and data element. However, initial efforts to model DIS using

ASN.1 clearly demonstrated its tendency towards “unnecessary complexity”. Its syntax

proved cumbersome and the degree of complexity was such that it would probably

discourage use of the grammar by others in future DIS development efforts. While ASN.1

would be suited for a rigorous, more formal definition of the protocol, it was not considered

appropriate for the simple needs of this thesis effort.

As an alternative to ASN.1, a Backus-Naur Form (BNF) [VNR93] grammar was

considered. BNF is a metalanguage typically used as a formal method for defining program

language constructs. BNF is widely accepted as a descriptive syntax and has been in use

since the earliest days of ALGOL in the late 50’s and early 60’s. More importantly, it may

be easily adapted to meet most any application need.

In terms of complexity, BNF is the embodiment of simplicity. The grammar is based

upon the fundamental concept ofsyntactic units and terminal symbols. Syntactic units are

the grammar constructs which are considered valid in the particular language being

described. In BNF, syntactic units are generally enclosed in angular brackets...

< grammar construct >

This notation is used for clarity and as a means to distinguish the acceptable grammar

constructs from other BNF symbology.



42

The terminal symbols used in BNF are, in effect, the primitive or atomic language

elements on which the described grammar is based. Similar to the manner in which letters

of the alphabet are used to create words and sentences, terminals in BNF are used to build

the syntactic units of a given grammar.

The symbol ‘ ::= ‘  is used in BNF to signify metalinguistic equivalence. It is used to

separate the left and right sides of a production rule or definition.

Ultimately, the grammar chosen for use in this thesis was a modified version of BNF,

influenced somewhat by ASN.1 syntax. The syntactic constructs used to build the DIS

descriptive grammar are shown in Table 3, below. Note the addition of extra  brackets,

‘ << >> ’, to distinguish PDUs, braces, ‘{}  ‘, to signify dynamic data structures (generally

implemented using pointers*), and square brackets, ‘[] ’, to indicate a sized array of

elements. Also, a semi-colon, ‘ ; ‘ is used to indicate the end of each DIS entity definition.

Grammar Construct Meaning

   <<  pdu  >>         PDU

     <  composite  >         composite data element

   {<  composite  >}         composite structure*

     <  composite  >[size]         composite element array

         atomic         atomic data element

      { atomic }         atomic structure*

         atomic[size]         atomic element array

         enum8, uint16,...         alias for primitive data type

                  ::=         “is defined as”

                  ;         “end definition”

Table 3. DIS Descriptive Grammar Constructs



43

C.  APPLICATION

Figure 4 illustrates the use of the DIS descriptive grammar in modeling a typical PDU,

a composite data element, and an atomic data type. Appendix A provides a structured

specification of all data elements in [IEEE93].

Figure 4. DIS Descriptive Grammar Example

The primitive data types (e.g. enum8) expressed in the grammar are, in reality, aliases

for the basic data types found in a typical programming language (C/C++). In the Protocol

<<EntityState_PDU>>    ::= <PDUHeader>
<EntityID>
  ForceID
  num_ap
<EntityType>
<Alt_EntityType>
<Entity_Linear_Velocity>
<Location_Entity>
<Entity_Orientation>
  entity_appearance
<DR_Parameters>
<Entity_Marking>
  capabilities
<Articulat_Params>[num_ap]

;

<PDUHeader>                ::= protocol_version
exercise_id
PDUType
protocol_family
time_stamp
length
padding16
;

ForceID                           ::= enum8;



44

Support Utility developed as part of this thesis, the correlations depicted in the following

Table apply.

As an application note, it is worthwhile to mention the difficulties involved in

modeling the DIS protocol using this (or any other) descriptive grammar. The principle

problem lies in the lack of clearly specified naming conventions for individual DIS entities.

By their nature, application layer protocols are ambiguous [Rose91]. The lack of

naming conventions compounds this situation and makes automated code generation

problematic, if not impossible. Routinely, a compiler would treat the following as unique

data elements:

Entity_State_PDU
EntityState_PDU
EntityStatePDU

Grammar Primitive C/C++ Data Type

bool32 unsigned int

enum8 unsigned char

enum16 unsigned short

float32 float

float64 double

pad8 char

pad16 short

pad32 unsigned int

uint8 unsigned char

uint16 unsigned short

uint32 unsigned int

Table 4. DIS Grammar-to-Data Type Correlation



45

The problem becomes more acute if the above declarations are to be used as data types

in a given implementation. The “C” language functions:

int doThis( PDUType   pdu);    and int doThis( PDU_Type   pdu);

are clearly different and would be treated as such by the compiler. The adoption of naming

standards associated with the DIS protocol could do much to reduce this potential for

ambiguity.

In spite of the naming issue, the application of the descriptive grammar to the protocol

was a straightforward process. The syntax was unambiguous in identifying which

constructs were PDUs, which were Composite data types, and which were Atomics.

Capitalization was used as a means of discriminating which Atomic types were meant to

be formal data type definitions (alatypedef in “C”). In this approach, the Atomic

declaration, PDUType, would signify a formal data type definition, while the declaration:

num_params, would indicate an Atomic data element defined in terms of some primitive

data type associated with the programming language used for DIS implementation.

Given a structured specification of the protocol, it is possible to develop tools to

manipulate the definition of the protocol by altering its grammar-based description. The

modified description may then  then used to regenerate the program code needed to

implement the altered protocol in a given host system. This is the underlying premise on

which the design and implementation of the Protocol Support Utility is based.



46



47

VI.  PROTOCOL SUPPORT UTILITY

Formal Description Techniques (FDTs) and automated tools have
long promised to make substantial contributions to the development of
communications protocols. Have they?....Yes; but, the success is more often
based on the capability to automate a tool than it is on the use of FDTs,....
                                                                                  Harry Rudin[Rudi92]

One advantage of a structured grammar is the ease in which it may be parsed and

processed. This is particularly true of the descriptive grammar just presented. This chapter

discusses the development and implementation of the Protocol Support Utility, a tool to

complement the grammar proposed in the last chapter and serve as a resource   in future

efforts to refine the DIS protocol.

A.  RATIONALE

As noted earlier in this work, the concept of DIS “scalability” is a growing concern.

The size and complexity of future simulations dictate that every possible step be taken to

optimize the current protocol, minimize system latencies, and conserve available

bandwidth. To this end, the DIS community has identified a number of protocol-related

improvements as objectives for future research (briefly discussed in Chapter II). Of the

many objectives cited, several serve as a foundational focus for this thesis effort. These

include:

--   Steps to increase functional areas covered by PDUs.

--   Balancing PDU information content with bandwidth efficiency.

--   Streamlining PDUs.

--   Definition of a tailorable PDU set.

--   Development of additional communications profiles.

Each of the noted objectives can be achieved, at least to some degree, by manipulating

the form and content of individual PDUs. Removal of static, redundant, or infrequently

used data from specific PDUs aids in reducing demand for bandwidth. New functional



48

areas, as well as added communications profiles, can be more rapidly developed and

implemented with a set of easily modified (or tailorable) PDUs. Experimentation with new

or improved PDUs might be encouraged if an automated means of protocol development

were available.

The Protocol Support Utility is intended as both a proof of concept and as a protocol

development resource. As a proof of concept, the Utility demonstrates the viability of

automated support tools for use in DIS protocol development. As a development resource,

the Utility provides a means to easily manipulate the form and content of a given PDU, and

automatically generate the program source code necessary to implement any changes made

to DIS protocol entities. This Utility, and the methods associated with its use, are

specifically intended to contribute to the growing body of work dedicated to the

improvement of the DIS Applications Protocol.

B.  FUNCTIONAL OVERVIEW

Simply put, the Protocol Support Utility provides an automated facility for protocol

entity development, to include authoring, editing, and implementation. As depicted in

Figure 5, the input to the Utility is a grammar-based description of one or more protocol

entities. Using the edit functions of the Utility, the form or content of any protocol entity

may be altered. This is done by merely changing the grammar that describes the particular

entity in question. Additionally, new entities may be built by using the descriptive grammar

constructs presented earlier in this work. Finally, the Utility may be used to automatically

generate the source code needed to implement any changes made in the protocol as a result

of this process.



49

Figure 5. Protocol Support Utility Functional Overview

C.  ASSUMPTIONS AND CONSTRAINTS

In the development of a typical computer-based application, it is prudent to establish

any assumptions or constraints which may impact the design and use of the system. In

building this tool, it was necessary to make several assumptions relating to the architecture

of the Utility and the operating environment in which it is intended for use. Additionally, a

number of assumptions were required with regard to the DIS protocol and the entities on

which it is based.

1. Operating Environment

As a DIS protocol development tool, the Utility is intended for use on any DIS-capable

system. Specific requirements are a UNIX-compliant host woth OSF/Motif. The platform

of choice for this implementation was Silicon Graphics.

<<SomePDU>>    ::=         <PDUHeader>
<EntityID>
ForceID

                                             <Param>[MAX]
                                               ;

                                                                  typedef struct  {

Protocol

Support

 Utility

PDUHeader         pduheader;
EntityID              entityid;
ForceID               forceid;
Param                  param[MAX];
}    SomePDU;



50

2. Performance Criteria

The Protocol Support Utility is a stand-alone, non-real-time development tool. It is

assumed that there are no time constraints placed upon system performance.

3. Basic Protocol Characteristics

From the protocol standpoint, it is assumed that every PDU will contain a PDU Header

as a means of identification. The format of the PDU Header is assumed to be consistent

with that established in the current DIS standard [IEEE93]. The grammar representation of

the PDU Header is depicted in Appendix A.

Additionally, it is assumed that the “Other PDU” entity will be defined by default in

any protocol which is developed using this Utility. Routinely, this PDU is used as a means

of identifying any PDUs which are considered “unknown” or not otherwise defined as part

of the DIS standard.

Finally, protocol entities are assumed to be either PDUs, Composite data elements, or

Atomic data elements. Composite data elements are, in effect, composite data structures.

The Composite elements are those protocol entities (other than PDUs) which are comprised

of one or more different data elements. By contrast, an Atomic data element is defined in

terms of a singular, primitive data type as discussed in Chapter V of this work.

4. Entity Naming

The Protocol Support Utility must parse and process a grammar-based representation

of the protocol. As such, the Utility is heavily reliant on the naming conventions applied to

DIS protocol entities. In the absence of a published naming standard, the following is

assumed:

--- PDU naming will consist of the name of the PDU followed by the letters

“PDU” (i.e. EntityStatePDU).

--- Any protocol entity which is to be implemented as a data type definition

(i.e. typedef) shall have a name containing one or more capital letters (i.e. PDUType). This

primarily relates to the definition of Atomic data elements and is  necessary to facilitate



51

proper source code generation. Those Atomic elements which are not intended as defined

data types shall be represented by lower case names or labels (i.e. num_params).

5. Arbitrary Numeric Constraints

The internal data structures within the Utility have been implemented as fixed size

arrays (discussed below). As such, it was necessary to assume certain arbitrary limits on the

number of individual protocol entities which the Utility can support during a given session.

Programmatically, these values are defined in the global header file

(disPSU_GLOBAL_DEFINES.h) of the Utility. As presently implemented, the following

numeric constraints have been assumed:

--- Total symbols supported 1000

--- Maximum PDUs 50

--- Maximum Composite/Atomic Types 200

--- Maximum Elements in a PDU/Composite 75

6. Applicability

It was also assumed that the principal role of the Protocol Support Utility is that of a

DIS data definition tool. Based upon a given grammar, the tool is expected to generate the

source code definitions for every protocol entity so described. This tool is not intended as

an automated means for reengineering the entire DIS communications infrastructure. Such

a task is beyond the scope of this Utility. This does not, however, preclude broader use of

this tool given a suitable DIS network interface and host system implementation.

D.  DESIGN AND IMPLEMENTATION

As previously depicted in Figure 5, the Protocol Support Utility provides an automated

facility to translate a structured representation of the DIS protocol into the C/C++ language

source code necessary to implement the PDUs and data elements described. To achieve this

goal, the Utility must provide the following capabilities:

--- Read and parse a given DIS descriptive grammar.



52

--- Maintain and store the grammar in an internal representation suitable

other program use.

--- Support both authoring and editing of the protocol grammar as necessary.

--- Support source code generation based upon specific Application Profiles.

--- Support interactive use of the tool through a simple to use, graphical user

interface (GUI).

The general design of the Protocol Support Utility mirrors this list of required

capabilities. The Utility was implemented using both the “C” and “C++” programming

languages, and the following describes the major functional areas of the application.

1. Tables and Structures

The heart of the Protocol Support Utility lies in the data structures established to

maintain and store the protocol grammar. Implemented as a series of fixed sized arrays, the

internal Tables serve as a repository for the individual protocol entities which are defined

in a given grammar. Four separate tables have been implemented to accommodate the DIS

grammar constructs.

a. Symbol Table

TheSymbol Table is the single structure in which the character strings, or labels,

associated with each grammar symbol are stored. In addition to this label, each entry in the

Symbol Table contains three index fields. Each index field corresponds to one of the

protocol constructs (PDU, Composite, or Atomic) supported by the grammar.

Only a single index field within a givenSymbol Table entry is used. If the label

which has been defined corresponds to a PDU, only the PDU index field is updated and the

other two index fields (Composite and Atomic) remain UNDEFINED. If the label

corresponds to an Atomic data element, only the Atomic index field is used. In effect, the

index fields in eachSymbol Table entry provide a way torememberthe type of protocol

entity associated with each label. The value of a given index is determined by the order in

which protocol entities are stored in one of the other Tables discussed below.



53

b. PDU Table

By default, thePDU Table is a 50 element composite array. Each entry in the

PDU Tablerepresents a single PDU definition and consists of a label index (pointing at its

name in theSymbol Table), an element count, and an array of one or more protocol

elements (either Composite or Atomic). The specific number of elements contained in a

given PDU is indicated by an integer value stored in the element count field.

c. Composite Table

The Composite Table is based upon a structure identical to that used for thePDU

Table. Similar to a PDU, a Composite element may be comprised of one or more protocol

elements (either Composite or Atomic). The label (character string) associated with a

Composite element is stored in theSymbol Tableand is referenced in a manner similar to

that used for thePDU Table.

d. Atomic Table

The Atomic Table differs slightly from the tables used to store PDUs and

Composite entities. An entry in theAtomic Table consists of twoSymbol Table indices and

a single character string. The first index into theSymbol Table references the position at

which the name of the Atomic element is stored. The second index provides the name of

the primitive data type associated with the Atomic element. The character string in each

entry is used during the generation of source code. Its purpose is to hold a string

representing a programming language data type (i.e. unsigned int).

The remaining data structure used to support the DIS grammar is theelement. In

the discussion above, it was noted that a PDU or Composite construct may consist of one

or more protocol elements. Theelement data structure represents a single instance of a

protocol element (either Composite or Atomic) as it occurs within a PDU or Composite

entity definition. The complete “C” language declaration for theelement structure, and

each data Table, may be found in thegenCLASS_globals.h file provided as part of the

Utility.



54

Collectively, these data structures  are used to store the entire grammar-based

description of a DIS protocol. However, the problem of parsing a grammar file input and

properly loading each data table has yet to be addressed. This information is presented in

the section that follows.

2. Lexical Analysis

Based upon the syntax discussed in the last chapter, the Protocol Support Utility uses

a LEX-based scanner for parsing an input grammar. This scanner is designed to recognize

the unique delimiters which identify PDUs and Composite or Atomic data elements.

 Basically, the scanner has been designed as a simple Finite State Machine. As may

seen in Appendix B, the scanner states include:

< C_CMMT >

< CPP_CMMT >

< INITIAL >

< PDU_DEF >

< STRUCT_DEF >

The first two states depicted above are provided to support embedded comments

within a grammar specification. Both “C” and “C++” commenting conventions are

allowed. In reality, the scanner detects a comment and ignores all subsequent tokens until

it recognizes an appropriate comment-ending delimiter.

The next state, < INITIAL >, is the static or reset state. In this state, the scanner is

awaiting the definition of a protocol entity. This state corresponds to the left-hand side of

a production rule and the scanner will accept any DIS grammar construct.

If, while in the < INITIAL > state, the scanner detects a PDU or Composite construct,

the < PDU_DEF > or < STRUCT_DEF > state will be set as appropriate. In either of these

states, the scanner expects to encounter only Composite or Atomic constructs. The

< PDU_DEF > and < STRUCT_DEF > states correspond to the right-hand side of a typical

production rule.



55

When the scanner detects an allowable construct, it invokes one of the Table

Management functions associated with the Utility. These functions provide the means to

initialize, load, and update the internal data tables (Symbol, PDU, etc.). The most notable

among these functions include:

Function Purpose

void initTABLES(); Initialization of all internal Tables.

void stripToken(); Remove grammar delimiting symbols.

void addSymbol(); Add token to Symbol Table.

void addSymbolPDU(); Add PDU element to PDU Table

void addSymbolCOMP(); Add Composite element.

void addSymbolATOM(); Add Atomic element.

The appropriate functions are invoked as each grammar construct is read and

recognized. As such, the internal data tables will be fully loaded when the scanner detects

the end of the input grammar file. The lexical analysis process is used repeatedly during

program operation as a method of initializing and updating the grammar stored in the

internal data tables.

3. User Interface

The Protocol Support Utility is operated by means of a windows-based, graphical

interface, shown in Figure 6. Implementation of this interface was completed using OSF/

Motif [Ferg93] text widgets. The interface consists of a Main Program Window which

supports a pulldown menu bar, a grammar view window, and a display for runtime status

messages. Also supported are a series of buttons which launch the individual editors for

each different type of protocol entity (PDU, Composite Type, Atomic Type).



56

F
ig

ur
e 

6.
P

ro
to

co
l S

up
po

rt
 U

til
ity

 U
se

r 
In

te
rf

ac
e



57

a. Grammar View Window

The Grammar View window provides a facility to view the grammar-based

representation of DIS protocol elements. This is implemented as a display-only window

and editing of the display is not supported.

The contents of the viewing window may be selected by means of the pulldown

widget labeled “Grammar View”. This widget is positioned immediately above the

Grammar View window and offers the following selections:

-- Sample - Allows viewing of a sample grammar specification. Selection of this

option invokes theviewSampleCB().

-- PDU - Allows viewing of all PDUs resident in the PDU Table. Selection of this

option invokes theviewPDUCB().

-- Composite - Allows viewing of all Composite elements resident in the

Composite Table. Selection of this option invokes theviewCompositeCB().

-- Atomic - Allows viewing of all Atomic elements resident in the Atomic Table.

Selection of this option invokes theviewAtomicCB().

-- All  - Selects viewing of all PDUs, Composite and Atomic types defined.

Selection of this option invokes theviewAllCB() .

b. Runtime Message Window

The Runtime Message window is positioned in the lower portion of the Main

Program Window. This window displays the program’s runtime status and error messages

as they occur. This window was implemented using a Motif Scrolling Text widget and, like

theGrammar View window, is used for display only.

c. Working Grammar File Window

This window displays the filename of the grammar file currently being

processed. This window is implemented using a simple, single line Text widget. The

Working Grammar Filewindow is for display purposes only and may not be edited.

A single function is used to display information in all test windows. The



58

void msgPrint();

function is used to initiate the display of a given string within a particular window. The

parameters passed to this function include the string to be displayed and the target window

(Widget) desired. As characters are displayed in a given widget, this function is also used

to update and maintain the respective cursor location within the window. This is necessary

for character insertion purposes under Motif.

4. Grammar Editors

Silicon Graphics provides an ASCII-based text editor, jot, for default use on most SGI

workstations. The Protocol Support Utility uses this program as the principle means of

editing the protocol grammar.

The Utility has been designed to support separate edit sessions for PDUs, and

Composite and Atomic data elements. The editor is “launched” by depressing the “Edit ”

button associated with a particular protocol entity. Once an edit session is initiated, ajot

window will appear. Thejot  display will contain the protocol elements which correspond

to the particular protocol entity to be edited. The specific contents of thejot window will

reflect the protocol elements currently stored in the associated internal data table.

Actual editing of the grammar may be done as one would edit any text file underjot .

In fact, any text-based editor may be used to edit a grammar file, though onlyjot  has been

integrated into this Utility. The criteria for selecting thejot  editor was based upon its

availability, adequacy for use, and ease of implementation. An alternate editor may be

added if required, and the procedure to do so is described in Appendix D.

To some extent, the other windows within the display may be used during an edit

session. If desired, information in theGrammar View window may be “Copied and Pasted”

into thejot window. This is particularly useful in building PDU’s which are based upon

previously Composite or Atomic entities.



59

Once editing is completed, the revised grammar may be saved and thejot  session

terminated. The result of this process is a grammar scratch file which contains the edited

data. This file is used in the subsequentUpdateprocess to be discussed later.

Because of the reliance onjot , implementation of theEdit  feature required little more

than a process to extract the needed information from the internal tables, create a scratch

file for the edit session, and invokejot  by means of a UNIXsystemcall. The program

callbacks employed in theEdit  process include:

void pduEditCB ();

void compEditCB ();

void atomEditCB ();

The Update function must be invoked to apply any grammar changes to the internally

stored data. This is accomplished by depressing theUpdate button associated with a

preceding edit session.

The purpose of theUpdate feature is to apply changes to the internal tables which

correspond to the edited grammar. Normally, this would be a complicated process and

would require that the information stored in the internal data tables be compared with the

contents of the previously saved scratch file. This approach was considered to be needlessly

complex and a potential source of significant processing overhead. Instead, an alternate

approach using the lexical scanner is employed.

As part of theUpdate process, an temporary input grammar file is built using the

scratch file created during a priorEdit  process. Appended to this input file is the internal

table data for the “non-edited” protocol entities. The resultant file contains the altered

grammar from the edit session and the original, unchanged table entries.

The final step in theUpdate chain is to reinitialize the internal tables and invoke the

scanner to process the temporary file built in the step above. As the scanner processes the

file, the internal tables are reloaded with the updated grammar. The specific callback

functions implemented as part of the Update process include:

void pduUpdateCB ();



60

void compUpdateCB ();

void atomUpdateCB ();

5. Source Code Generation

The ability to author and edit the description of individual protocol entities is of

marginal value if there is no way to translate the protocol grammar into a more usable,

readily implemented form. One of the principle features of the Protocol Support Utility is

its ability to generate program source code based upon a previously parsed grammar.

Because of the way in which protocol entities are modeled using the descriptive grammar,

the Utility is particularly well suited for producing the source code data definitions (i.e

header files).

Given the diversity of the DIS community, it is unlikely that the source code produced

for one DIS application would meet the needs of another. Even with the adoption of a

global naming convention for protocol entities, substantial differences in host system

implementations would exist. One system may be minimally impacted by changes to the

protocol while another may be substantially dependent on the form and content of each

protocol entity.

A single method of source code production is not appropriate for DIS purposes. Hence,

the need for the Protocol Support Utility to be flexible in terms of the structure, content,

and scope of the source code produced. As a means to this end, the concept of an

Application Profile has been incorporated into the tool.

An Application Profile is a collection of functions needed to produce the desired

source code output for a given system. These Profiles may differ widely. One may result in

generation of an entire object-oriented network harness produced in C++. Another Profile

may generate a single Ada procedure. The characteristics of a Profile are dictated by the

implementation dependencies within the host system application and the extent to which

automated source code generation is possible.



61

Two Application Profiles (NPSNET, Class-based) have been incorporated into the

Protocol Support Utility. Appendix D discusses the straightforward manner in which

additional Profiles may be added.

a. NPSNET Profile

NPSNET is a DIS-compliant, networked software architecture built to support

large scale virtual environments [Mace94]. This system was selected as a candidate profile

based upon its local availability and its maturity as a host platform for DIS use.

The first step in developing an Applications Profile is the identification of DIS-

related implementation dependencies within the system in question. In building the

NPSNET profile, this was done by identifying the specific functions within the network

harness which were dependent upon the definition of protocol entities, whether PDUs or

protocol data types.

A cursory inspection of NPSNET revealed that nearly thirty percent of the

network interface software was in some way dependent upon the protocol definition. The

majority of dependent functions were those that merely referenced a data type defined by

the protocol (i.e. PDUType). This dependency was easily resolved by ensuring that the

naming conventions used in both the DIS grammar and the NPSNET application were

consistent.

Six functions within the NPSNET network harness were wholly dependent on

the protocol. Due to specific implementation dependencies, only two of the protocol-

dependent functions were candidates for automated source code generation. The remaining

functions were purely host-dependent implementations and not suited for code generation

using this Utility.

Once the implementation dependencies had been isolated, the Profile was

developed. NPSNET network functions which had little or no dependence on the protocol



62

definition were placed in source code template files (shown below) to be used in

regenerating the NPSNET network software.

__disbridge.cc          (NPSNET DIS_bridge)

__disnetlib.cc            (NPSNET DIS_net_manager)

The implementation dependent functions, those not suited for code generation,

were placed in separate template files to be used “as is” during source code production.

These files are shown below.

__disbridge_depend.cc

__disnetlib_depend.cc

Finally, the functions needed to generate the remaining source code for the

NPSNET Profile were implemented. In this particular Profile, the actual source code

generated by the Utility was limited to two functions within the network harness and a

global header file used to define all protocol entities. The specific functions responsible for

source code generation (under the NPSNET profile) can be found in_npsPROFILE.C file

supplied as part of this Utility.

b. Class-based Profile

The second profile included with the Utility is the Class-based Profile. This is

meant to demonstrate the ability of the Utility to generate source code based upon different

programming constructs or paradigms. The same NPSNET network harness was used as a

basis for this profile.

Under this Profile, each PDU is implemented as a derived class based upon the

dis_bridge anddis_net_lib classes implemented under NPSNET. A virtualwrite_pdu()

function is included in each definition.

The program code generated under this Profile is purely notional and intended

as a demonstration in the production of object-oriented source code. In its current state, it

is not intended as a means to generate an entire Class-based network harness.



63

E.   INSPECTION AND TESTING

Testing of the Protocol Support Utility was performed by means of exercising the

program and evaluating the subsequent results. The lexical analysis function was validated

by scanning a typical grammar file and programmatically examining the contents of the

internal data tables.

The user interface was evaluated in terms of both function and performance. All

display functions were verified by ensuring that each window contained the appropriate

user data.

Finally, source code generation was verified by means of visual inspection and host

system recompilation. In the case of the NPSNET Profile, the source code generated by the

Utility was compared to the original system source code on a line-by-line basis. Following

the visual inspection, recompilation of the network harness was performed using the

Utility-produced source code. To achieve a successful recompilation, it was necessary to

perform minor modifications to the template files and original grammar file used for the

NPSNET Profile. Not surprisingly, the difficulties encountered during this process related

soley to the issue of entity naming as discussed earlier in this work.



64



65

VII.  FINDINGS AND FUTURE RESEARCH

 The future of DIS will largely depend on  its ability to adapt to the growing user

demand for distributed simulation and to support the larger, more dynamic “virtual worlds”

of tomorrow. In this context, the “scalability” of the protocol is one of the principle issues

that must be addressed. The magnitude and complexity of this problem indicates that a

solution may only be found through the collective effort of the entire DIS community. This

thesis was prepared as part of that collective effort.

This chapter provides a summary of the findings and conclusions resulting from this

thesis. The following information reflects the trails and tribulations experienced in

formulating a DIS descriptive grammar, in developing the Protocol Support Utility, and in

the application of both. Also presented below is a synopsis of related topics which may be

considered for future investigation.

A.  FINDINGS

As discussed earlier, this thesis effort was organized into three distinct phases. The

findings and results of this work may be similarly organized.

First, those findings which coincide with efforts toformulate a suitable DIS

descriptive grammar:

--  A modified BNF grammar was successfully used to describe DIS protocol

entities. The attraction in using this approach to model the protocol was its inherent

simplicity.

--   The ASN.1 syntax was considered to be overly complex for the purposes of this

thesis. However, should a rigorous, more formal definition of the DIS protocol be required,

ASN.1 should be considered.

Findings which coincided with theapplication of the descriptive grammar to the

DIS protocol:

--   A simple grammar may be used to model the data elements associated with a

complex protocol. The use of a modified BNF syntax proved effective in describing the



66

protocol entities defined in the current DIS standard. The resultant specification was both

readable and suitable for parsing.

--   Several ambiguities were noted when attempting to model the DIS protocol.

Generally, these ambiguities stemmed from lack of a clearly defined naming convention

for individual protocol entities.

--   Though the modified BNF syntax was suitable for modeling the PDUs and data

entities associated with DIS, it was not well suited for modeling the methods or

implementation details needed in processing these entities. This deficiency became

apparent when modeling the protocol, and was confirmed during development of the

Protocol Support Utility.

In this regard, in may be necessary to forego the simplicity of the BNF grammar and

explore a syntax better suited for modeling methods as well as data. Again, ASN.1 may

prove to be the grammar of choice.

Finally, findings which coincided with thedevelopment and implementation of the

Protocol Support Utility :

-- Similar to those encountered in modeling the protocol, implementation

difficulties were experienced due to the lack of established naming conventions in DIS.

Due to redundancies in naming, the current Enumeration Document [IST93] does not lend

itself to automated code generation.

--   The DIS enumeration data should be published as a library or header file for

direct implementation. Coincident with this effort, a standard naming convention should be

adopted for all DIS protocol entities.

--    Without a clearly defined API, automated code generation is problematic. This

finding has more to do with local implementation practices than it does the DIS protocol.

A more generic network harness should be developed, one not dependent on specific

protocol entity definitions. Once implemented, this network harness would serve as the API

needed to accommodated automated source code production for DIS applications.



67

B.  CONCLUSIONS

The objective of this thesis was to develop a method and mechanism to facilitate future

DIS protocol improvement efforts. This objective was met through the formulation and

application of a descriptive DIS grammar, and by developing and demonstrating the

Protocol Support Utility. As a proof of concept, this thesis further demonstrated the

possibility of using an automated tool to assist in DIS protocol modeling and applications

development.

The ultimate value of this thesis effort will be determined by the extent to which this

work contributes to future DIS protocol improvements. If the “scalability” of DIS is to be

addressed by refining the form and content of DIS PDUs, then this work may well apply.

C.  TOPICS FOR FURTHER RESEARCH

DIS is an ever evolving technology. Future research opportunities can be found in

virtually every facet of DIS. In [IST94], the DIS community succinctly defined its

objectives for future research. These objectives were discussed earlier in this work and

need not be reiterated here. However, there does exist a number of topics which stem

specifically from this work.

With regard to the Protocol Support Utility, the following may be explored:

--  Addition of a compliance validation feature. This feature would provide a means to

verify that a new or refined protocol element is consistent with a given DIS standard.

Addition of this feature would extend the utility of the tool to include protocol Verification,

Validation and Accreditation (VV&A) as well as ongoing Configuration Management

efforts.

--  Refinement of the protocol edit functions within the Protocol Support Utility. If

desired, a template-based editor may be developed as an alternative to the use ofjot .

--  Add code generation capabilities for other languages (if demand exists). Also, the

refinement of the current Application Profiles and the addition of new Profiles might be

pursued.



68

--  Experimentation with new or modified PDUs to measure deltas in host system

performance.

Finally, additional topics which are not specifically related to this thesis but may hold

merit as paths for future DIS research include:

--  Develop mechanism for real-time adaptation to new/modified PDUs.

--  Implementation of a more dynamic protocol paradigm. Candidates for consideration

may include scripted or interpretive protocols (i.e. Telescript), introduction of migratory

objects, or the use of self-describing protocol entities.



69

APPENDIX A: DIS PROTOCOL SPECIFICATION

This section provides a structured specification of the  Protocol Data Units defined in the current DIS

standard.  The specific grammar used is a modified version of Backus-Naur Form (BNF) as described earlier

in this report.  Low level, bit-oriented data types are represented by a descriptive name followed by the

number of bits in the field.  For example, uint16 indicates a sixteen bit  unsigned integer. Similarly, pad16

represents a sixteen bit data element used for byte alignment/padding.



70

Protocol Data Units (PDUs)



71

Entity Information/Interaction Protocol Family

<<EntityStatePDU>> ::= <PDU_Header>
<Entity_ID>
   Force_ID
   num_articulation_param
<EntityType>
<Alt_EntityType>
<Entity_Linear_Velocity>
<Location_Entity>
<Entity_Orientation>
   entity_appearance
<DR_Parameters>
<Entity_Marking>
   capabilities
<Articulation_Parameters>[num_articulation_param]
;

<<Collision_PDU>> ::= <PDU_Header>
<Issuing_Entity_ID>
<Colliding_Entity_ID>
<Event_ID>
   padding16
<Velocity>
   mass
<Location>
;



72

Warfare Protocol Family

<<Fire_PDU>> ::= <PDU_Header>
<Firing_Entity_ID>
<Target_Entity_ID>
<Munition_ID>
<Event_ID>
   padding32
<Launch_Location>
<Burst_Descriptor>
<Velocity>
   range
;

<<Detonation_PDU>> ::= <PDU_Header>
<Firing_Entity_ID>
<Target_Entity_ID>
<Munition_ID>
<Event_ID>
<Velocity>
<Location_Detonation>
<Burst_Descriptor>
<Location_Target>
   Detonation_Result
   num_articulation_param
   padding16
<Articulation_Parameters>[num_articulation_param]
;



73

Logistics Protocol Family

<<Service_Request_PDU>> ::= <PDU_Header>
<Requesting_Entity_ID>
<Servicing_Entity_ID>
   Service_Type
   num_supply_types
   padding16
<Supplies> [num_supply_types]
 ;

<<Resupply_Offer_PDU>> ::=  <PDU_Header>
 <Receiving_Entity_ID>
 <Supplying_Entity_ID>
    num_supply_types
    padding24
 <Supplies> [num_supply_types]
 ;

<<Resupply_Receive_PDU>> ::= <PDU_Header>
<Receiving_Entity_ID>
<Supplying_Entity_ID>
   num_supply_types
   padding24
<Supplies> [num_supply_types]
;

<<Resupply_Cancel_PDU>> :: = <PDU_Header>
<Receiving_Entity_ID>
<Supplying_Entity_ID>
;

<<Repair_Complete_PDU>> ::= <PDU_Header>
<Receiving_Entity_ID>
<Repairing_Entity_ID>
   RepairType
   padding16
;

<<Repair_Response_PDU>> ::= <PDU_Header>
<Receiving_Entity_ID>
<Repairing_Entity_ID>
   Repair_Result
   padding8[3]
;



74

Simulation Management Protocol Family

<<Create_Entity_PDU>> :=: <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   Request_ID
;

<<Remove_Entity_PDU>> ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   Request_ID
;

<<Start-Resume_PDU>>  ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
<Real_World_Time>
<Simulation_Time>
   Request_ID
;

<<Stop-Freeze PDU>> ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
<Real_World_Time>
   Reason
   Frozen_Behavior
   padding16
   Request_ID
;

<<Acknowlegde_PDU>>  ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   Acknowledge_Flag
   Response_Flag
   Request_ID
;

<<Action_Request_PDU>> ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   padding32
   Request_ID
   Action_ID
   num_fixed_datum_rec
   num_variable_datum_rec
<Fixed_Datum_Records> [num_fixed_datum_rec]

                                                                  <Variable_Datum_Records>[num_variable_datum_rec]



75

;

<<Action_Response_PDU>>  ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   padding32
   Request_ID
   Request_Status
   num_fixed_datum_rec
   num_variable_datum_rec
<Fixed_Datum_Records> [num_fixed_datum_rec]

                                                                   <Variable_Datum_Records>[num_variable_datum_rec]
;

<<Data_Query_PDU>>  ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   Request_ID
   time_interval
   num_fixed_datum_rec
   num_variable_datum_rec
<Fixed_Datum_Records> [num_fixed_datum_rec]

                                                                   <Variable_Datum_Records> [num_variable_datum_rec]
;

<<Set_Data_PDU>>  ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   Request_ID
   padding32
   num_fixed_datum_rec
   num_variable_datum_rec
<Fixed_Datum_Records> [num_fixed_datum_rec]

                                                                                 <Variable_Datum_Records>[num_variable_datum_rec]
;

<<Data_PDU>> ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   Request_ID
   padding32
   num_fixed_datum_rec
   num_variable_datum_rec
<Fixed_Datum_Records> [num_fixed_datum_rec]

                                                                   <Variable_Datum_Records>[num_variable_datum_rec]
;



76

<<Event_Report_PDU>>  ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   Event_Type
   padding32

num_fixed_datum_rec
   num_variable_datum_rec
<Fixed_Datum_Records>[num_fixed_datum_rec]

                                                                   <Variable_Datum_Records>[num_variable_datum_rec]
;

<<Message_PDU>> ::= <PDU_Header>
<Originating_Entity_ID>
<Receiving_Entity_ID>
   padding32
   num_fixed_datum_rec
   num_variable_datum_rec
<Fixed_Datum_Records>[num_fixed_datum_rec]

                                                                   <Variable_Datum_Records>[num_variable_datum_rec]
;



77

Distributed Emission Regeneration Family

<<Electromag_Emission_PDU>> ::= <PDU_Header>
<Emitting_Entity_ID>
<Event_ID>
   state_update_indicator
   num_systems
   padding16
<Emitting_System_Data>[num_systems]
;

<<Designator_PDU>>  ::= <PDU_Header>
<Designating_Entity_ID>
   Code_Name
<Designated_Entity_ID>
   padding8
   designator_code
   designator_power
   Designator_Wavelength
<Designator_Spot>
<Designator_Spot_Loc>
;

<<Transmitter_PDU>> ::= <PDU_Header>
<Entity_ID>
   Radio_ID
<Radio_Entity_Type>
   Transmit_State
   Input_Source
   padding16
<Antenna_Location>
<Relative_Antenna_Location>
   Antenna_Pattern_Type
   antenna_pattern_length
   Frequency
   Transmit_Frequency_Band
   Power
<Modulation_Type>
   Crypto_System
   Crypto_Key_ID
   length_modulation_param
   padding24
<Modulation_Param> [length_modulation_param]
<Antenna_Pattern_Param> [antenna_pattern_length]
;



78

<<Signal_PDU>>  ::= <PDU_Header>
<Entity_ID>
   Radio_ID
   Encoding_Scheme
   TDL_Type
   Sample_Rate
   data_length
   Samples
<Signal_Data> [data_length]
;

<<Receiver_PDU>> ::= <PDU_Header>
<Entity_ID>
   Radio_ID
   Receiver_State
   padding16
   Received_Power
<Transmitter_Entity_ID>
   Transmitter_Radio_ID
;



79

Composite Data Types



80

<Alt_Entity_Type > ::=    Entity_Kind
   Domain
   Country
   Category
   SubCategory
   Specific
   Extra
;

<Angular_Vel_Vector> ::=    rate_about_x
   rate_about_y
   rate_about_z
;

<Antenna_Location> ::= <World_Coord>
;

<Antenna_Pattern_Param> ::= <Omni_Pattern>             |
<Beam_Pattern>            |
<Spherical_Pattern>
;

<Articulation_Parameters> ::=    P_Type_Designator
   change_indicator
   ID-Part_Attached_to
   parameter_type
   parameter_value[8]
;

<Beam_Data> ::=    beam_data_length
   Beam_ID
   beam_param_index
<Fund_Param_Data>
   Feam_Function
   num_targets
   HD_Track_Jam
   padding8
   Jam_Mode_Seq
<Track_Jam>
;

<Burst_Descriptor> ::= <Munition >
   Warhead
   Fuse
   quantity
   rate
;



81

<Beam_Direction> ::=    psi
   theta
   phi
;

<Beam_Pattern> ::= <Beam_Direction>
   beam_az
   beam_elev
   Reference_Sys
   padding24
   Ez
   Ex
   Phase
;

<Colliding_Entity_ID > ::= <Entity_ID >
;

<Designated_Entity_ID> ::= <Entity_ID >
;

<Designating_Entity_ID> ::= <Entity_ID >
;

<Designator_Spot> ::= <Entity_Coord>
;

<Designator_Spot_Loc> ::= <World_Coord>
;

<DR_Param> ::=    DR_Algorithm
   Other_DR_Parameters
<Linear_Vel_Vector>
<Angular_Vel_Vector>
;

<Emitter_System> ::=    Emitter_Name
   Emitter_Function
   Emitter_ID
;

<Emitting_Entity_ID > ::= <Entity_ID >
;

<Emitting_System_Data> ::=    system_data_length
   num_beams
   padding16
<Emitter_System>
<Location_Emitter>
<Beam_Data>
;



82

<Entity_Coord> ::=    x_component
   y_component
   z_component
;

<Entity_ID > ::= <Sim_Address>
   Entity_ID
;

<Entity_Linear_Velocity > ::=    x_component
   y_component
   z_component
;

<Entity_Marking > ::=    Character_Set
   markings[11]
;

<Entity_Orientation > ::= <Euler_Angle>
;

<Entity_Type> ::=    Entity_Kind
   Domain
   Country
   Category
   SubCategory
   Specific
   Extra
;

<Euler_Angle> ::=    psi
   theta
   phi
;

<Event_ID> ::= <Entity_ID >
;

<Firing_Entity_ID > ::= <Entity_ID >
;

<Fixed_Datum_Records> ::=    Fixed_Datum_ID
   Fixed_Datum
;



83

<Fund_Param_Data> ::=    beam_frequency
   beam_freq_range
   erp
   prf
   pulse_width
   beam_az_center
   beam_az_sweep
   beam_elev_center
   beam_elev_sweep
   beam_sweep_sync
;

<Issuing_Entity_ID> ::= <Entity_ID >
;

<Linear_Vel_Vector> ::=    vector_component1
   vector_component2
   vector_component3
;

<Location_Emitter> ::= <Entity_Coord>
;

<Location_Entity> ::= <World_Coord>
;

<Location_Launch> ::= <Entity_Coord>
;

<Location_Detonation> ::= <World_Coord>
;

<Location_Target> ::= <Entity_Coord>
;

<Modulation_Type> ::=    Spread_Spectrum
   Major
   Detail
   System
;

<Modulation_Param> ::= uint8
;

<Munition > ::= <Entity_Type>
;

<Munition_ID > ::= <Entity_ID >
;

<Originating_Entity_ID > ::= <Entity_ID >



84

;

<PDU_Header> ::=    protocol_version
   exercise_id
   PDU_Type
   protocol_family
   time_stamp
   length
   padding16
;

<Radio_Entity_Type> ::= <Entity_Type>
;

<Real_World_Time> ::=    hour
   time_past_hour
;

<Receiving_Entity_ID> ::= <Entity_ID >
;

<Relative_Antenna_Location> ::= <Entity_Coord>
;

<Repairing_Entity_ID > ::= <Entity_ID >
;

<Requesting_Entity_ID> ::= <Entity_ID >
;

<Servicing_Entity_ID> ::= <Entity_ID >
;

<Signal_Data> ::=    digit_audio
;

<Sim_Address> ::=    Site_ID
   Application_ID
;

<Simulation_Time> ::=    hour
   time_past_hour
;

<Supplies> ::= <Supply_Type>
;

<Supplying_Entity_ID> ::= <Entity_ID >
;



85

<Supply_Type> ::= <Entity_Type>
   quantity_supply
;

<Target_Entity_ID > ::= <Entity_ID >
;

<Transmitter_Entity_ID > ::= <Entity_ID >
;

<Track_Jam> ::= <Entity_ID >
   Emitter_ID
   Beam_ID
;

<Variable_Datum_Records> ::=    Variable_Datum_ID
   variable_datum_length
   variable_datum_value
   {padding}
;

<Velocity> ::=    x_component
   y_component
   z_component
;

<World_Coord> ::=    x_coord
   y_coord
   z_coord
;



86

Atomic Data Types



87

acknowledge_flag ::= enum16;

Action_ID ::= uint32;

antenna_pattern_length::= uint16;

Antenna_Pattern_Type ::= enum16;

Application ::= uint16;

Application_ID ::= uint16;

beam_az ::= float32;

beam_az_center ::= float32;

beam_az_sweep ::= float32;

beam_elev ::= float32;

beam_elev_center ::= float32;

beam_elev_sweep ::= float32;

beam_data_length ::= uint8;

beam_frequency ::= float32;

beam_freq_range ::= float32;

Beam_Function ::= enum8;

Beam_ID ::= uint8;

beam_param_index ::= uint16;

beam_sweep_sync ::= float32;

capabilities ::= bool32;

Category ::= enum8;

change_indicator ::= uint8;

Character_Set ::= enum8;

Code_Name ::= enum16;

Country ::= enum16;

Crypto_Key_ID ::= uint16;



88

Crypto_System ::= enum16;

data_length ::= int16;

designator_code ::= enum8;

designator_power ::= float32;

Designator_Wavelength ::= float32;

Detail ::= enum16;

Detonation_Result ::= enum8;

digit_audio ::= uint8;

Domain ::= enum8;

DR_Algorithm ::= enum8;

Emitter_Function ::= enum8;

Emitter_ID ::= uint8;

Emitter_Name ::= enum16;

Encoding_Scheme ::= enum16;

antity_appearance ::= enum32;

Entity_ID ::= uint16;

Entity_Kind ::= enum8;

ERP ::= float32;

event ::= uint16;

Event_Type ::= enum32;

Exercise_ID ::= uint8;

ex ::= float32;

Extra ::= enum8;

ez ::= float32;

Fixed_Datum ::= enum32;



89

Fixed_Datum_ID ::= uint32;

Force_ID ::= enum8;

Frequency ::= uint64;

Frozen_Behavior ::= enum8;

Fuse ::= enum16;

HD_Track_Jam ::= enum8;

hour ::= int32;

ID-Part_Attached_to ::= uint16;

Input_Source ::= enum8;

Jam_Mode_Seq ::= uint32;

length ::= uint16;

length_modulation_param ::= uint8;

markings ::= uint8;

Major ::= enum16;

mass ::= float32;

num_articulation_param ::= uint8;

num_beams ::= uint8;

num_fixed_datum_rec ::= uint32;

num_supply_types ::= uint8;

num_systems ::= uint8;

num_targets ::= uint8;

num_variable_datum_rec ::= uint32;

Other_DR_Param ::= enum120;

padding ::= pad8;

padding8 ::= pad8;

padding16 ::= pad16;



90

padding24 ::= pad24;

padding32 ::= pad32;

parameter_value ::= int64;

param_type ::= enum32;

Phase ::= float32;

P_Type_Designator ::= enum8;

PDU_Type ::= enum8;

phi ::= float32;

Power ::= float32;

prf ::= float32;

protocol_family ::= enum8;

protocol_version ::= enum8;

psi ::= float32;

Pulse_Width ::= float32;

quantity ::= uint16;

quantity_supply ::= float32;

Radio_ID ::= uint16;

range ::= float32;

rate ::= uint16;

rate_about_x ::= float32;

Rrte_about_y ::= float32;

rate_about_z ::= float32;

Reason ::= enum8;

Receiver_Power ::= float32;

Receiver_State ::= enum16;



91

Reference_Sys ::= enum8;

Repair ::= enum16;

Repair_Result ::= enum8;

Request_ID ::= uint32;

Request_Status ::= enum32;

Response_Flag ::= enum16;

Samples ::= int16;

Sample_Rate ::= int32;

Service_Type ::= enum8;

site ::= uint16;

Site_ID ::= uint16;

Specific ::= enum8;

Spread_Spectrum ::= enum16;

State_Update_Indicator ::= enum8;

SubCategory ::= enum8;

System ::= enum16;

system_data_length ::= uint8;

TDL_Type ::= enum16;

theta ::= float32;

time_interval ::= uint32;

time_past_hour ::= uint32;

time_stamp ::= uint32;

Transmit_Frequency_Band ::= float32;

Transmit_State ::= enum8;

Transmitter_Radio_ID uint16;

variable_datum_length ::= uint32;



92

Variable_Datum_ID ::= enum32;

variable_datum_value ::= enum32;

vector_component1 ::= float32;

vector_component2 ::= float32;

vector_component3 ::= float32;

Warhead ::= enum16;

x_component ::= float32;

x_coord ::= float64;

y_component ::= float32;

y_coord ::= float64;

z_component ::= float32;

z_coord ::= float64;



93

APPENDIX B: DIS LEX SOURCE LISTING

The source code provided below is a LEX-based analyzer used to process a DIS protocol grammar. The

accepted grammar is the same modified BNF syntax shown in Appendix A.

Program: DIS LEX

Written by: Mike Canterbury
         Date:         950708

Purpose:   This function serves as a lexical analyzer
                    used to parse a DIS grammar specification.
                    The function is implemented using LEX syntax
                    and  is part of the Protocol Support Utility.

%s C_CMMT CPP_CMMT PDU_DEF STRUCT_DEF
%{

#include <string.h>

#ifndef PDU_SUPPORT_GLOBALS
#include “genCLASS_globals.h”
#endif

#ifndef PDU_SUPPORT_FUNCTIONS
#include “genCLASS_funcs.h”
#endif

char tokenString[MAX_STRING];
char structString[MAX_STRING];
char dataString[MAX_STRING];

int  LHS = 1;

/*   The below function strips the special delimiter symbols  */
/*  from the scanned tokens.                                     */
/*                   */
void stripToken(char* inString,int tokenType, int yyleng)
  {
  int  count;
  char *tempString = ““;

  for(count=tokenType;count<(yyleng-tokenType);count++)
    {
    if (inString[count] != ‘ ‘)
      tempString[count-tokenType] = inString[count];
    }
  tempString[count-tokenType] = ‘\0’;
  strcpy(tokenString,tempString);
  }
%}



94

%%

[ \t]* { /*  skip whitespace  */ };
<INITIAL>[ \n]*|
<PDU_DEF>[ \n]*|
<STRUCT_DEF>[ \n]*    { /*  end of line  */ };

“/*”         { BEGIN C_CMMT; };
<C_CMMT>[^*/]         ;
<C_CMMT>”*/”         { BEGIN INITIAL; };

“//” { BEGIN CPP_CMMT; };
<CPP_CMMT>[^\n]*    ;
<CPP_CMMT>[\n] { BEGIN INITIAL; };

<INITIAL>\<\<[A-Za-z_][-A-Za-z0-9_]*\>\>
{ BEGIN PDU_DEF;
  stripToken(yytext,2,yyleng);

                                  addSymbolPDU(tokenString);
};

<INITIAL>\<[A-Za-z_][-A-Za-z0-9_]*\>
{ BEGIN STRUCT_DEF;

                                  stripToken(yytext,1,yyleng);
                                  addSymbolCOMP(tokenString, LEFT, NONE);

};

\:\:\=                           {LHS = 0; };

<INITIAL>[-A-Za-z0-9_]*
{ stripToken(yytext,0,yyleng);
  if (LHS)

                                     {
                                     addSymbolATOM(tokenString, LEFT, NONE);
                                     }

  else
     {

                                      addSymbolATOM(tokenString, RIGHT, NONE);
     };
};

<PDU_DEF>\<[A-Za-z_][-A-Za-z0-9_]*\>      |
<STRUCT_DEF>\<[A-Za-z_][-A-Za-z0-9_]*\>

{ stripToken(yytext,1,yyleng);
                                   addSymbolCOMP(tokenString, RIGHT, NONE);

};
<PDU_DEF>\{\<[A-Za-z_][-A-Za-z0-9_]*\>\}    |
<STRUCT_DEF>\{\<[A-Za-z_][-A-Za-z0-9_]*\>\}

{ stripToken(yytext,2,yyleng);
                                   addSymbolCOMP(tokenString, RIGHT, LINK);

};
<PDU_DEF>\[[-A-Za-z0-9_*+/]*\]
                                 { stripToken(yytext,0,yyleng);
                                   addPDU_Array(tokenString);

};
<STRUCT_DEF>\[[-A-Za-z0-9_*+/]*\]

{ stripToken(yytext,0,yyleng);
                                   addCOMP_Array(tokenString);

};

<PDU_DEF>[-A-Za-z0-9_]*                  |
<STRUCT_DEF>[-A-Za-z0-9_]*

                        { stripToken(yytext,0,yyleng);
                                   addSymbolATOM(tokenString, RIGHT, NONE);
                                 };



95

<INITIAL>\;                     {
LHS = 1;

                                 objectCOMPLETE(ATOM_DEF_STATE);
};

<PDU_DEF>\;                     {
        BEGIN INITIAL;
        LHS = 1;

                                 objectCOMPLETE(PDU_DEF_STATE);
                                 };
<STRUCT_DEF>\;                 {
                                 BEGIN INITIAL;

LHS = 1;
                                 objectCOMPLETE(COMP_DEF_STATE);

};
%%

int yywrap()        /*  close the input file   */
  {
  fclose(yyin);
  return 1;
  }



96



97

APPENDIX C: PROTOCOL SUPPORT UTILITY USER’S GUIDE

The Protocol Support Utility is intended as a tool to be used in the development and

refinement of DIS data elements (PDUs, composite data types, atomic data types). The

following describes the installation, operation, and use of this tool.

System Hardware Requirements

The Protocol Support Utility was developed for use on platforms which support

typical UNIX-hosted, X-Window environments. Beyond the need for minimal runtime disk

space, no other special resources or hardware facilities are required.

Installation

The following files are required for proper program operation. All files should be

installed in the same directory in which the Utility is to be used.

File Use

disPSU Protocol Support Utility

_defaultPDU.gram Default/initialization grammar

The following files are required to support source code generation for the Application

Profiles specified:

NPSNET Profile

__enum.h Enumeration data file (source:NPSNET pdu.h)

__disbridge.cc Source code template (DIS_bridge)

__disnetlib.cc Source code template (DIS_net_manager)

__disbridge_depend.cc Implementation dependent source

__disnetlib_depend.cc Implementation dependent source

Class-based Profile

__enum.h Enumeration data file (source:NPSNET pdu.h)

__disbridgeCLASS.cc Class template (DIS_bridge)

__disnetlibCLASS.cc Class template (DIS_net_manager)



98

Silicon Graphics provides an ASCII-based text editor,jot , for default use on most SGI

workstations. The Protocol Support Utility uses this program as the principle means of

editing the protocol grammar. To ensure proper operation of this feature,jot  should be

installed in the following location:

 /usr/sbin/jot

This is the default installation path forjot  on most systems. Ifjot  is not available, or

another editor is preferred, an alternate program may be used. However, the use of an

alternate editor requires that minor changes be made to the Protocol Support Utility, and

the entire system recompiled. Appendix D discusses the specific source code changes

required.

Program Initiation

The Protocol Support Utility may be initiated from the UNIX command line as

follows:

% disPSU

If desired, an initial grammar file may be loaded on program start-up by providing the

name of the desired grammar file when invoking the Utility as follows:

% disPSUmyGrammar.gram

User Interface

As can be seen in Figure C-1, the user interface provided with the Protocol Support

Utility consists of a Main Program Window which supports a pulldown menu bar, a display

window for runtime status messages, and a viewing window in which working grammar

definitions may be displayed. Also provided are buttons to initiate the editing and update

of specific grammar constructs.



99

The pulldown menu bar has two options,File andGenerate. The File menu is used

to manage the grammar files processed by the Utility, while theGenerateoption is used to

initiate source code production as appropriate. The particular facilities provided under each

option are discussed below.

Figure C-1.  Protocol Support Utility User Interface

The Grammar View window provides a facility to view the grammar-based

representation of DIS protocol elements. This is window is for display only and editing is

not supported. The contents of the viewing window may be selected by means of the

pulldown widget labeled “Grammar View”. This widget is located directly above the

viewing window and offers the following selections:



100

-- Sample - allows viewing of a sample grammar specification.

-- PDU - allows viewing of all PDUs defined in the current working file.

-- Composite - allows viewing of all Composite types defined.

-- Atomic- allows viewing of all Atomic types defined.

-- All - allows viewing of all PDUs, Composite, and Atomic types defined.

The Grammar View window may be scrolled to view protocol definitions which

have been selected for viewing but do not appear within the text window. If necessary, the

window may be refreshed by reselecting the particular grammar view desired.

TheRuntime Messagewindow is located in the lower portion of the Main Window.

This purpose of this window is to display the program’s runtime status and error messages

as they occur. Like theGrammar View display, this window may be scrolled to view

previous messages which do not appear within the current viewing area.

Located immediately above theRuntime Message window is the Working

Grammar File window. This single line, text window displays the path and filename of

the grammar file currently active in the Utility. Like theGrammar View andRuntime

Message windows, theWorking Grammar File  window is used for the display of

information only and may not be edited.

Grammar Files

TheFile option on the Menu Bar provides facilities toOpen andMerge pre-existing

grammar files, as well as createdNew files for protocol development work. It should be

noted that any grammar file loaded must be in a format consistent with the DIS descriptive

grammar specified for use with this Utility. A brief discussion of the grammar is presented

later in this guide.



101

Also found under theFile option are facilities toSave the working grammar file,

Close the working grammar file, andExit  the program.

Authoring and Editing

This Utility supports the use of a simple grammar to describe DIS protocol entities.

The Grammar has three basic constructs:

<< ProtocolDataUnits >>

< CompositeDataTypes >

   AtomicDataTypes

These constructs are used to model the individual protocol entities associated with

DIS. The following example illustrates the use of this grammar in describing a typical DIS

entity:

<<SamplePDU>> ::= <PDUHeader>

<EntityID>

 ForceID

 params

;

Note the difference in the representation of the two Atomic data elements,ForceID

andparams. The capitalization of letters in the first element is significant. This is a naming

convention that may be used within an Applications Profile to distinguish between Atomic

elements which are to be defined as data types and those which are merely variables of

some base data type supported by a given programming language.

 Naming conventions are an important consideration when describing protocol

entities. Care should be taken that the names given to protocol entities be consistent with

those used in the system for which code is to be generated. Failure to do so will result in

compilation problems when the generated code is integrated into the DIS host system.



102

DIS descriptive grammars may be authored or edited using any ASCII-based text

editor. As mentioned above, the editing facility incorporated into the Protocol Support

Utility is jot , a SGI-supplied product. Grammar edit functions are initiated by depressing

theEdit   button associated with the particular DIS protocol construct to be edited. When a

particular edit function is invoked, ajot  session is launched. When invoked, the jot editor

will contain the grammar description of the DIS entities associated with the current session.

For example, the PDU Editor may be launched by depressing the Protocol Data UnitEdit

button. This done, ajot  session will appear and the session window will contain all PDUs

currently defined in the Utility’s internal PDU table.

The grammar displayed in anyjot session may be edited as desired. The  filename

reflected by the jot editor (seen above the jot window) is a scratch file created by the Utility.

Once editing is complete, this file must be saved if changes to the grammar are to be made.

Once the altered grammar file has been saved, thejot  editor may be exited. To effect

any changes made during an edit session, the correspondingUpdate button must be

depressed. Initiating theUpdate function will effectively reinitialize the internal symbol

tables within the Utility, thereby incorporating any changes made to the grammar. There is

no “undo” feature currently implemented in the Utility.

Source Code Generation

Code Generation is an automated process. Any working grammar may be used to

generate DIS program source code. Aworking grammar  is the grammar definition in use

by the program at the time that Code Generation is initiated. As mentioned earlier, the file

associated with theworking grammar  is displayed in theWorking Grammar File

window.



103

To initiateCode Generation, select the appropriate Applications Profile under the

Generatemenu located on the Main Menu Bar. Currently, two Applications Profiles have

been implemented. The first, NPSNET Profile, generates source code based upon NPSNET

IV [Mace94]. The second profile, Class-based Profile, is intended as an example of C++

source code production. The source code generated by this profile should not be considered

to be complete. It does, however, provide a starting point from which an object- oriented

network harness might be produced.

Additional Profiles may be added to the Utility if desired. Similarly, the current

Profiles may be modified or improved if required. Appendix D discusses the program

modifications necessary to incorporate this type of change.

Program Termination

The Protocol Support Utility may be terminated by selecting theExit option in the

File menu located on the Main Menu Bar or by closing (“double-clicking”) the main

program window. Care should be taken to save all work prior to program termination.



104



105

APPENDIX D: APPLICATION SUPPORT INFORMATION

The viability of the Protocol Support Utility may be dictated by the ease in which it

can be maintained, modified, and enhanced. The following information is provided to assist

in future efforts to support this application, whether intended to improve the tool or to

correct deficiencies which may be discovered through continued use.

Files

The following files constitute the source code necessary to maintain and regenerate

the Protocol Support Utility.

File Use

pduGUI.C Source Code - User Interface

pduGUI.h Header - User Interface

disPSU_GLOBAL_DEFINES.h Global definitions

genCLASS.C Source Code - LEX Interface/Table Management

genCLASS_globals.h Header - Global type declarations

genCLASS_funcs.h Header - Function prototypes

genLEX.l Source Code - Scanner/Lexical Analysis

lex.yy.c Source Code - LEX generated source file

genLEX.h Header - LEX function prototype

_classPROFILE.C Source Code - Class-based Application Profile

_classPROFILE.h Header - Application profile prototypes

_npsPROFILE.C Source Code - NPSNET Applications Profile

_npsPROFILE.h Header - Application profile prototypes

Makefile Program Build

In addition to the files noted above, the following are required for program execution:

disPSU Protocol Support Utility

_defaultPDU.gram Default/initialization grammar



106

_NPSgram.gram Representative NPSNET grammar

__enum.h Enumeration data file (source:NPSNET pdu.h)

__disbridge.cc Source code template (DIS_bridge)

__disnetlib.cc Source code template (DIS_net_manager)

__disbridge_depend.cc Implementation dependent source

__disnetlib_depend.cc Implementation dependent source

__disbridgeCLASS.cc Class template (DIS_bridge)

__disnetlibCLASS.cc Class template (DIS_net_manager)

Default Environment

The default environment parameters for the Protocol Support Utility are provided in

the global header file,disPSU_GLOBAL_DEFINES.h. The definitions established in this

file include default filenames for the various grammar files used by the tool, as well as the

specific path needed to invoke the default editor,jot . Also included in this header file are

the definitions which specify internal table sizes and the maximum number of discrete

symbols supported by this Utility. As presently implemented, these declarations include:

Declaration Meaning

---   MAX_PDUS                    50 PDU Table size, maximum number of PDUs allowed.

---   MAX_TYPES                200 Composite/Atomic Table sizes.

---   MAX_ELEMENTS         75 Number of elements which may comprise a PDU/

Composite type.

---   MAX_SYMBOLS       1000 Symbol Table size, maximum number of symbols.

---   MAX_STRING                30 Length of symbol (PDU, Composite, Atomic) name.

Editor

As noted in the paragraph above, the Protocol Support Utility usesjot  as the principle

means of editing the protocol grammar. This editor is initiated by means of a UNIX system

call which passes the path necessary to invokejot  as well as the name of the scratch file to



107

be opened for use in the grammar edit process. A declaration  within the global header file

reflects the following path to the editor:

 /usr/sbin/jot

This is the default installation path forjot  on most systems. Ifjot  is not available, or

another editor is preferred, an alternate program may be used. This change may be made

by simply modifying the path and editor portions of the following definitions (found in the

global header file):

---  PDU_EDITOR_PATH “/usr/sbin/jot _pduSCRATCH.GRAM”

--- COMP_EDITOR_PATH “/usr/sbin/jot _compSCRATCH.GRAM”

--- ATOM_EDITOR_PATH “/usr/sbin/jot _atomSCRATCH.GRAM”

Lexical Analysis

Grammar files read by the Utility are processed by means of a LEX-based scanner.

The scanner has been designed to parse tokens which signify DIS protocol entities

(<<PDUs>>, <Composites>, Atomics) and is used repeatedly for the initialization and

loading of all internal tables. The LEX syntax for the scanner may be found ingenLEX.l

and the same LEX source listing is included in Appendix B.

The LEX utility is used to generate the “C” language source code necessary to

produce a scanner for a given grammar. In the case of the Protocol Support Utility, the LEX

source included ingenLEX.l is used for parsing DIS constructs. Changes to the DIS

grammar will necessitate that corresponding changes be made to the LEX source.

Subsequent to any changes to the LEX source, the “C” language source code for the

scanner must be regenerated by means of the LEX utility. This process may be

accomplished at the UNIX command line by:

%  lex genLEX.l



108

The result of using the LEX utility is a single “C” language source file,yy.lex.c. This

file must be recompiled into the Protocol Support Utility to implement any changes to the

DIS grammar. This may be simply accomplished by:

% make

Code Generation

Code Generation is an automated process. The Protocol Support Utility uses the

concept of an Applications Profile as a means of producing the desired source code output.

In essence, Code Generation is merely a process of extracting grammar information from

the Symbol Tables within the program and translating this grammar into the language and

programming constructs specified by the Applications Profile.

Currently, two Applications Profiles have been included with the Utility. The first,

NPSNET, is based upon the network harness currently implemented in NPSNET IV

[Mace94]. The files which constitute the functions and data used in this profile include:

_npsPROFILE.C - Source Code Generation

_npsPROFILE.h - Function prototypes

_NPSgram.gram - NPSNET grammar

__enum.h - Enumeration data file

__disbridge.cc - Source code template (DIS_bridge)

__disnetlib.cc - Source code template (DIS_net_manager)

__disbridge_depend.cc - Implementation dependent source

__disnetlib_depend.cc - Implementation dependent source

The NPSNET profile was built by identifying the specific functions within the

network harness which were dependent upon the definition of protocol entities, whether

PDUs or protocol data types. The functions which had little or no dependence on the

protocol definition were placed in the source code template files listed above. The

remaining protocol-dependent functions were analyzed to determine whether they were



109

implementation dependent or could be regenerated by the Protocol Support Utility. The

implementation dependent functions were placed in the so named source files listed above.

Those functions which were appropriate for automated source code production were

generated by the utility as “C”-language constructs. The specific functions responsible for

source code generation (under the NPSNET profile) can be found in_npsPROFILE.C.

The actual source code generated by the Utility under the NPSNET Profile is a combination

of the original NPSNET source and the code generated by the Utility.

The second, Class-based Profile is meant to demonstrate the ability of the Utility to

generate source code based upon different programming constructs or paradigms. The

same NPSNET network harness was used as a basis for this profile. However, this profile

was intended as a demonstration in producing object-oriented source code and not as a

means to generate an entire Class-based network harness. The files which constitute this

profile include:

_classPROFILE.C - Source Code generation

_classPROFILE.h - Function prototypes

_NPSgram.gram - NPSNET grammar

__enum.h - Enumeration data file

  __disbridgeCLASS.cc - Class template (DIS_bridge)

__disnetlibCLASS.cc - Class template (DIS_net_manager)

It is recommended that new profiles be built in a manner similar to that used on the

two profiles discussed above. The functions necessary to extract Symbol Table data and to

produce source code in the form and language of choice should be placed in a single “.C”

file. In addition to anyinclude files needed for the Profile in question, the following

statements should be placed at the beginning of the “.C” file:

#include “disPSU_GLOBAL_DEFINES.h”

#ifndef GUI_SUPPORT_FUNCTIONS

#define GUI_SUPPORT_FUNCTIONS

#include “pduGUI.h”



110

#endif

#include “genCLASS_globals.h”

#include “_npsPROFILE.h”

extern SYMBOLS  symbolTABLE[MAX_SYMBOLS];

extern pduSTRUCT pduTABLE[MAX_PDUS];

extern compSTRUCT compositeTABLE[MAX_TYPES];

extern atomSTRUCT  atomicTABLE[MAX_TYPES];

extern int pduCOUNT;

extern int compositeCOUNT;

extern int atomicCOUNT;

An accompanying header file should be prepared which contains the  prototypes for

the functions associated with the Profile as well as any target filenames needed for program

output.  For example, the header file associated with the NPSNET profile

(_npsPROFILE.h) includes prototypes for each function used to build the generated

source code. Additionally, the header file specifies the following output files which will

contain the  code generated by the Utility:

#define NPSNET_PDU_HEADER            “NPSpdu.h”

#define NPSNET_DIS_BRIDGE_FILE   “NPSdisbridge.cc”

#define NPSNET_DIS_MANAGE_FILE  “NPSdisnetlib.cc”

To implement a new Profile, several minor changes will be required to the Protocol

Support Utility. All necessary changes may be made in thepduGUI.C file.

First, it will be necessary to add a pull-down entry to theGenerate menu. This can be

done by adding the following source code to themake_generate_menu()function in the

pduGUI.C file. Note: The name of the new Profile and callback function should be added

as appropriate.

 make_pulldown_entry(menupane, “new Profile”, genNewCB,  (XtPointer) NULL);



111

Next, a callback function should added which invokes source code generation under

the new Profile. The following is an example of the callback used to initiate source code

production for the NPSNET Profile:

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

/* genNPSCB -  */

/*   This function initiates generation of  the NPSNET Profile  */

/*  Source Code definitions.  */

void genNPSCB (Widget, XtPointer, XtPointer)  {

    msgPrint(message_box ,”>>> Generating NPSNET Profile Source...\n”

                                                      ,MESSAGE_WINDOW);

   npsnetCodeGen();

   }   /*  End genNPSCB...  */

Finally, changes should be made to theMakefile to reflect the “.C” file and header

file associated with the new Profile. The specific portion of theMakefile which must be

modified is shown below. As an example, the entries necessary to incorporate the NPSNET

Profile are depicted in bold type.

pduGUI:    pduGUI.o genCLASS.o genCLASS_funcs.h genLEX.h pduGUI.h \

genCLASS_globals.h _npsPROFILE.h _classPROFILE.h disPSU_GLOBAL_DEFINES.h

CC -o disPSU pduGUI.o lex.yy.o genCLASS.o_npsPROFILE.C _classPROFILE.C \

$(CFLAGS) $(LIBS)

Enumeration Data

In the profiles above, DIS enumeration data is appended to the end of the protocol

header file produced by the Utility (e.gNPSpdu.h). The enumeration data used in the

current Profiles is contained in __enum.h.  The data in this file is used as known to be

outdated, but is consistent with that used in the most recent release of NPSNET. Up-to-date

enumeration data can be found in [IST95a].



112



113

LIST OF REFERENCES

[Bate94]  Bate, Gordon,  Network Performance Simulation for Distributed Interactive
Simulations, Proceedings of the 11th Workshop on Standards for the
Interoperability for Defense Simulations, Institute of Simulation and
Training, Orlando, Florida, September, 1994.

[Budd94] Budd, Timothy, A., Classic Data Structures in C++, Addison-Wesley
Publishing Company, Menlo Park, California, 1994.

[Calv94]         Calvin, James, O., Van Hook, Daniel J.AGENTS: An Architectural
Construct to Support Distributed Simulation,  Proceedings of the 11th
Workshop on Standards for the Interoperability for Defense Simulations,
Institute of Simulation and Training, Orlando, Florida, September, 1994.

[Case90] Case, Jeffery, D., Panel Review of Long-Haul Networking in Distributed
Simulations, Institute of Defense Analysis Document D-780, January,1990.

[Dick94]         Dickens, Alan R., Self-Describing Entities in the Distributed Interactive
Simulation Environment, Proceedings of the 10thWorkshop on Standards
for the Interoperability of Defense Simulations, Institute of Simulation and
Training, Orlando, Florida, March, 1994.

[DSBR93] Defense Science Board Report,Impact of Advanced Distributed Simulation
on Readiness, Training and Prototyping, January 1993.

[Felt95] Felton, Eric, Morrison, John, Migratory Object Protocol and its Application
to Distributed Simulation, Proceedings of the 12th Workshop on Standards
for the Interoperability  of Defense Simulations, Institute of  Simulation and
Training, Orlando, Florida, March, 1995.

[Ferg93]   Ferguson, Paula M.,Motif Reference Manual for OSF/Motif Release 1.2,
O’Reilly & Associates, Inc., Sebastopol, California, 1993.

[IEEE93] Institute of Electrical and Electronics Engineers, International Standard,
ANSI/IEEE Std 1278-1993, Standard for Information Technology,
Protocols for Distributed Interactive Simulation, March 1993.

[ISO84] International Organizaton for Standardization (ISO), ISO 7498-1984,,
Open Systems Interconnection - Basic Reference Model, ISO Secretariate,
Geneva, Switzerland1984.



114

[IST92] Institute for Simulation and Training, IST-CR-92-21,Guidance Draft
Document, Communication Architecture for Distributed Interactive
Simulation (CADIS),University of Central Florida, Orlando, Florida,
November 1992.

[IST93] Institute for Simulation and Training, IST-CR-93-02,Enumeration and Bit
Encoded values for Use with Protocols for Distributed Interactive
Simulation Applications, University of Central Florida, Orlando, Florida,
March 1993.

[IST93a] Institute for Simulation and Training, IST-CR-93-21,Rationale,
Communication Architecture for Distributed Interactive Simulation
(CADIS), University of Central Florida, Orlando, Florida, June 28, 1993.

[IST93 b] Institute for Simulation and Training, IST-93-40,Standard for Distribiuted
Interactive Simulation -- Application Protocols, Version 2.0 [Fourth
Draft], University of Central Florida, Orlando, Florida, February 1994.

[IST94] Institute for Simulation and Training, IST-SP-94-01,The DIS Vision -- A
Map to the Future of Distributed Simulation, University of Central Florida,
Orlando, Florida, May 1994.

[IST94a] Institute for Simulation and Training, IST-CR-94-15, Standard for
Distributed Interactive Simulation --  Communication Architecture and
Security [Draft], University of Central Florida, Orlando, Florida, March
1994.

[IST95] Institute for Simulation and Training, IST-CR-94-15,Standard for
Distributed Interactive Simulation --  Communication Services and
Profiles [Draft], University of Central Florida, Orlando, Florida, March
1995.

[IST95a] Institute for Simulation and Training, IST-CR-95-05, Enumeration and Bit
Encoded values for use with IEEE 1278.1-1995, Standard for Distributed
Interactive Simulation - Application Protocols, University of Central
Florida, Orlando, Florida, 1995.

[ITU88] International Telecommunications Union, Telecommunications
Standardization Sector,Open Systems Interconnection Model and
Notation - Specification of Abstract Syntax Notation One (ASN.1),
Recommendation X.208, Melbourne, Australia, 1988.



115

[Levi92] Levine, John R., Mason, Tony, Brown, Doug,LEX & YACC, O’Reilly &
Associates, Sebastopol, California, 1990,1992.

[Lope94] Loper, Margaret, L.,Phases vs. Profiles: A Strategy for CADIS, Proceedings
of the 10thWorkshop on Standards for the Interoperability of Defense
Simulations, Institute of Simulation and Training, Orlando, Florida, March,
1994.

[Mace94] Macedonia, Michael R.,  Zyda, Michael J, Pratt, David R., Barham, Paul T.,
Zeswitz, Steven,NPSNET: A Network Software Architecture for Large
Scale Virtual Environments , Presence, Vol 3. No. 4, Fall 1994.

[Mace95] Macedonia, Michael R., A Network Software Architecture for Large Scale
Virtual Environments, Dissertation, Naval Postgraduate School,
Monterey, California, September 1993.

[Milg95] Milgram, David L.,Strategies for Scaling DIS Exercises using ATM
Networks, Position Paper, 12th DIS Workshop on Standards for the
Interoperability of Distributed Simulations, Orlando, Florida March 1993.

[Milg95a]        Milgram, David, Cohen, Adam, Trinko, Tom, ExMan - Exercise
Management Toolkit,  Proceedings of the 12th Workshop on Standards for
the Interoperability for Defense Simulations, Institute of Simulation and
Training, Orlando, Florida, March, 1995.

[Peck95]         Peck, Charles C., Lander, W. Brent, Hancock John P.,Application of
Distributed Object Technology to DIS, Proceedings of the 12th Workshop
on Standards for the Interoperability  of Defense Simulations, Institute of

                        Simulation and Training, Orlando, Florida, March, 1995.

[Prat95] Pratt, David R.,Recommendation for Lower Bandwidth and Resource
Requirements for DIS PDUs, Position Paper, 12th DIS Workshop on
Standards for the Interoperability of Distributed Simulations, Orlando,
Florida, March 1993.

[Ratz95] Ratzenberger, Annette C.,DIS Compliant, Interoperable, and Compatible
(The Need for Definitions and Standards), Position Paper, 12th DIS
Workshop on Standards for the Interoperability of Distributed Simulations,
Orlando, Florida March 1993.

[Rose90] Rose, Marshall T.,The Open Book - A Practical Perspective on OSI,
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1990.



116

[Rose91] Rose, Marshall T., The Simple Book - An Introduction to TCP/IP-based
Internets, Prentice Hall, Englewood Cliffs, New Jersey 07632, 1991.

[Rudi92] Rubin, Harry, Protocol Development Success Stories: Part I, Proceedings
of the 12th International Workshop on Protocol Specification, Testing, and
Verification, North-Holland Amsterdam, June 1992.

[Stal94] Stallings, William, Data and Computer Communications, Fourth Edition,
MacMillian Publishing Company, New York, New York, 1994.

[Stev90] Stevens, W. Richard, UNIX Network Programming, Prentice Hall,
Englewood Cliffs, New Jersey 07632, 1990.

[Tarr94] Tarr, Ronald W., Jacobs, John W.,Distributed Interactive simulation (DIS):
What is it and where is it Going?, Presentation to the Society for Computer
Simulation, 1994 Summer Computer Simulation Conference, La Jolla,
California, July 1994.

[VNR93] Encyclopedia of Computer Science, Third Edition, Von Nostrand Reinhold,
New York, New York, 1993.

[Vrab93] Vrablik, Rob, Wilbert, Deborah, ,The Use of Semi-Automated Forces to
Simulate a 10,000 Entity Exercise, Proceedings of the Third Conference
on Computer Generated Forces and Behavioral Representation, Orlando,
Florida, March 1993.

[Wayn95]      Wayner, Peter, Agents Unleashed - A Public Domain Look at Agent
Technology, AP Professional, Chestnut Hill, Massachusetts, 1995.

[Wold95]        Woldt, Michael B.,DIS Correlation Tools,Proceedings of the 12th Workshop
on Standards for the Interoperability for Defense Simulations, Institute of

                        Simulation and Training, Orlando, Florida, March, 1995.

[Zes93] Zeswitz, Steven R., NPSNET: Integration of Distributed Interactive
Simulation (DIS) Protocol for Communication Architecture and
Information Interchange, Master’s Thesis, Naval Postgraduate School,
Monterey, California, September 1993.



117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA     22304-6145

2. Dudley Knox Library 2
Code 013
Naval Postgraduate School
Monterey, CA     93943-5101

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA     93943

4. Dr Michael Zyda, Code CS/ZK 1
Computer Science Department
Naval Postgraduate School
Monterey, CA     93943

5. Prof John Falby, Code CS/JA 1
Computer Science Department
Naval Postgraduate School
Monterey, CA     93943

6. Dr Don Brutzman, Code UW/BR 1
Computer Science Department
Naval Postgraduate School
Monterey, CA     93943

7. Major Michael Canterbury USMC 2
Decision Support Systems Division
Marine Corps Tactical Systems Support Activity
MCB Camp Pendleton, CA   92709


